
Reference manual of the FORTRAN utility library
TTUTIL v. 4

D.W.G. van Kraalingen & C. Rappoldt

Report 5

D.W.G. van Kraalingen & C. Rappoldt

Plant Research International, Wageningen
March 2000 Report 5

Reference manual of the FORTRAN utility library
TTUTIL v. 4

Plant Research International

Address : Droevendaalsesteeg 1, Wageningen, The Netherlands
: P.O. Box 16, 6700 AA Wageningen, The Netherlands

Tel. : + 31-317-477000
Fax : + 31-317-418094
E-mail : post@plant.wag-ur.nl
Internet : http://www.plant.wageningen-ur.nl

Table of contents

page

1. Introduction 1

2. General description 3

2.1 Product perspective 3
2.2 Product identification 3
2.3 Supported platforms 3
2.4 Availability 4
2.5 Hard and software limitations 4

3. The structure of the TTUTIL library 5

4. General concept of RD routines 7

4.1 A simple example 7
4.2 Reading tables and arrays with fixed lengths 9
4.3 Using missing values 10
4.4 Getting information about a variable 10
4.5 Range checks on input 10
4.6 Making reruns with the RD routines 11
4.7 Note when using reruns and the RDINIT routine 12
4.8 Summary of available interface calls 13

4.8.1 Routines for opening and closing files 13
4.8.2 Basic RD routines for reading data 13
4.8.3 Routines that perform range checks 13

5. Reference manual of data file syntax 15

5.1 Variable name syntax 15
5.2 Definitions of data types 15

5.2.1 REAL and DOUBLE PRECISION data type 15
5.2.2 INTEGER data type 16
5.2.3 LOGICAL data type 16
5.2.3 CHARACTER data type 17
5.2.4 Date/time data type 17
5.2.6 'Missing' data type 18

5.2 Defining arrays 18
5.4 Comment lines 19
5.5 Separation of specifications 19

6. The ENT routines 21

7. The OUT routines 23

8. Known problems 27

8.1 Illegal nesting of input sections 27
8.2 Closing RD* input files 27
8.3 Compiler specific problems 27

8.3.1 Digital Visual Fortran and Compaq Visual Fortran 27
8.3.2 All Macintosh MPW Fortran compilers 28
8.3.3 Macintosh Absoft Fortran 90 compiler 28

9. Reference manual of interface calls 29

9.1 Reading of TTUTIL format datafiles 29
9.2 Writing of TTUTIL format datafiles 49
9.3 Interactive input 53
9.4 Output to file 58
9.5 File and unit handling 62
9.6 Character string handling 67
9.7 Decoding of character strings to values 73
9.8 Error handling 74
9.9 Version routines 75
9.10 Numeric functions 76
9.11 Date/time 81
9.12 ‘Raw’ file I/O 84
9.13 List search and sorting 85
9.14 Random number generation 88
9.15 Miscellaneous 89
9.16 Internal routines 90

10. Reserved symbol names 91

10.1 General 91
10.2 Reserved common block names 91
10.3 Names of internal TTUTIL routines 91
10.4 Names of BLOCK DATA sections 91

11. Capacity settings of TTUTIL read routines 93

12. Removed routines 95

References 97

1

1. Introduction

Over the past years we developed solutions for ever recurring problems with respect to file input, file
output, character strings and file handling in Fortran simulation models. Each time we paid a little
more attention than strictly necessary for the problem at hand. This has resulted in a slowly growing set
of subroutines and functions that proved to be useful in almost any Fortran program. Most of these
routines have gone through a number of revisions and a lot of new routines have been added. The set
of routines became the utility library TTUTIL. The solutions that are offered by TTUTIL have saved
many researchers enormous amounts of time and the library is now used in more than a few hundred
places all around the world.

Through our experience on different hardware and software platforms, we are able to garantee a very
high degree of portability to other machines. TTUTIL has been used sucessfully on VAX/VMS,
OpenVMS for AXP, Prospero Fortran 77 for Atari 1024 ST, Microsoft Fortran 5.1 (MS-DOS), Micro-
soft Professional Powerstation (MS-DOS, Windows), GNU Fortran for Unix, Sun Fortran, LS Fortran
for Macintosh v.2, Digital Visual Fortran v.5 for Windows 95 and Windows NT, Compaq Visual For-
tran v.6.1 for Windows 95 and Windows NT and Absoft Fortran-90 for the Macintosh.

This is the last version of TTUTIL which fully complies with the FORTRAN-77 standard. Future ver-
sions may contain elements of the Fortran 90 language. We do not foresee a complete redesign of
TTUTIL in Fortran 90 or 95 style. We will maintain, however, the functionality described in this report
with current and new Fortran compilers.

This report serves as a reference manual in using the library. We hope that others will find the library a
useful tool in improving their programs.

This report replaces CABO/TT report no. 20 (Rappoldt & van Kraalingen, 1990).

Authors of this report:

D.W.G. van Kraalingen C. Rappoldt
Alterra Biological Centre

State University Groningen
P.O. Box 47 Kerklaan 30
6700 AA Wageningen 9751 NN Haren
The Netherlands The Netherlands
e-mail: d.w.g.vankraalingen@alterra.wag-ur.nl e-mail: c.rappoldt@biol.rug.nl

2

3

2. General description

2.1 Product perspective
The TTUTIL library is a collection of FORTRAN-77 utility routines for string handling, file i/o and
screen i/o. Many routines are utilities in the sense that they do not make use of any mathematical or
numerical method, do not contain measured data and do not depend on assumptions concerning some
described system. Utilities simply perform their task with respect to input, output, string handling, file
handling etc. They are tools for writing reliable and readable FORTRAN programs.

2.2 Product identification
Product: TTUTIL (floppy disk + manual)
Version: Version 4.12
Purpose: FORTRAN-77 utility library
Author(s) Daniël van Kraalingen, C. Rappoldt

2.3 Supported platforms
The TTUTIL library is available for the following platforms (note however, that the source code is
capable of running on a wider range of platforms):

Windows NT/95/98 on Intel processors:
� Digital Visual Fortran v.5.0a-d
� Compaq Visual Fortran v.6.1

Macintosh:
Absoft Pro Fortran 6.0 (www.absoft.com) consisting of:

� Fortran 77 compiler for PowerMac version 4.5 (1998)
� Fortran 90 compiler for PowerMac version 2.0 (1998)

The linker can link Fortran 90 programs with Fortran 77 libraries, so there is no immediate need for
using a Fortran 90 compiled TTUTIL library (see however the use of the function LINT in ‘known
bugs’).

Language Systems Fortran 77 consisting of:
� compiler for 68k Macs version 3.3 (1993)
� compiler for PowerMac version 1.2 (1996)

The products of Language systems have been taken over by Fortner Research (www.fortner.com).
They have given up on this compiler, however, and Language Systems Fortran is no longer available.

Both the Language Systems and Absoft compilers work from Apple’s MPW shell. They allow the
Fortran programs to be linked as either MPW tools or as standalone applications. Absoft claims its
compilers are link compatible with MetroWorks CodeWarrior in PPC mode.

4

2.4 Availability
The TTUTIL library is available by submitting an e-mail request to sps@ab.dlo.nl. Usually a nominal
fee is charged for delivery.

2.5 Hard and software limitations
The TTUTIL system is written in FORTRAN-77 with a few commonly accepted extensions to the
standard. It is therefore easiest to use the TTUTIL library from a Fortran program, however, experi-
enced programmers should have no difficulty calling TTUTIL routines from other programming lan-
guages.

5

3. The structure of the TTUTIL library

Table 3.1 gives a classification of the TTUTIL routines. Closely related routines have names often be-
ginning with the same acronym. For instance, the ‘DEC’ routines DECCHK, DECINT, DECREA
and DECREC are used for decoding character strings into real or integer values.

Table 3.1 can be used for an efficient search through the library if you are looking for a routine that
solves a specific programming problem. The routine descriptions, given in Section 9, provide further
information on the individual subroutines and functions. In general, there will be no need for any fur-
ther documentation. A few groups, however, require a more detailed introduction. These are the RD
routines for reading data files with a convenient format (Section 4 and 5), the ENT routines for inter-
active variable entry, and the OUT routines for easy output programming.

Table 3.1 Available TTUTIL routines

Category Available routines

Reading of TTUTIL format datafiles: rdinit, rdpars, rddtmp
rdsets, rdfrom
rdinqr, rdinqr2, rdinlv, rdinne, rdindt, rdinar
rdscha, rdsdou, rdsint, rdslog, rdsrea, rdstim
rdacha, rdadou, rdaint, rdalog, rdarea, rdatim
rdfcha, rdfdou, rdfint, rdflog, rdfrea, rdftim
rdador, rdainr, rdarer
rdfdor, rdfinr, rdfrer
rdsdor, rdsinr, rdsrer
rdmdef, rdmcha, rdmdou, rdmint, rdmlog, rdmrea, rdmtim

Writing of TTUTIL format datafiles: wrinit
wracha, wraint, wralog, wrarea, wratim, wradou
wrscha, wrsint, wrslog, wrsrea, wrstim, wrsdou

Interactive input: entcha, entdch, entint, entdin, entrea, entdre, entdou, entddo,
entyno, entdyn, enttim, entdti

Output to file: copfl2
outar2
outcom
outdat, outplt
outsel

File and unit handling: delfil, extens, flexist, flname
fopeng, fopens
getun, getun2, usedun

6

Table 3 continued

Category Available routines

Character string handling: addinf, addint, addrea, addref, addstf, addstr
ilen, istart
lowerc, upperc
remove
str_copy
words
rchrsrc

Decoding of character strings to values:decchk, decint, decrea, decrec
Error handling: fatalerr, warning
Version routines: ttuver, ver4.12
Numeric functions: fcnsw, insw, intgrl, limit, lint, lint2, movavr, notnul, reaand,

reanor
Date/time: dtardp, dtdpar, dtdpst, dtfsecmp, dtfsedp, dtleap
 ‘Raw’ file I/O: getrec,

recread, recread_init, recread_term
List search and sorting: ifindc, ifindi, sfindg

sortch, sortin
Random number generation: iunifl, unifl
Miscellaneous: ambusy, chktsk, timer2
Internal routines: dtsys, rddata, rddecd, rddeci, rddecl, rddect, rderr, rdindx, rdlex,

rdsctb, rdtmp1, rdtmp2, swpi4

See Section 12 for a description of the routines that have been removed in this version.

7

4. General concept of RD routines

4.1 A simple example
The ordinary method for reading data from a file consists of a number of READ statements, each
reading data from a record of the file. That method clearly requires that the sequence of READ state-
ments is consistent with the contents of the file. Moreover, array lengths have to be known in the pro-
gram or have to be read as separate data items. The ordinary reading method, moreover, requires accu-
rate positioning of the data items otherwise multiplication or division by 10 can sometimes occur. In
general, much time is invested in debugging such ‘simple’ input sections.

The solution suggested sometimes in textbooks on FORTRAN is to read data from file as character
strings and to perform the decoding in the program. This method, however, requires a considerable
programming effort and a need was felt for generally applicable input routines that allow a great deal of
flexibility and provide robustness. The RD routines are designed to do just this. They enable the con-
struction of clear, short and robust input sections consisting of CALL's only and the construction of
robust, powerfull, self-explanatory datafiles.

The general idea is that the input file contains both the variable name and the associated value(s). The
values are extracted from the data files using a set of subroutines whose names all begin with RD (e.g.
RDSREA means 'read a single real value'). With these routines the user can request the value from the
datafile by supplying the name of the requested variable (of course after having defined which data file
to use). As an example the statement:

CALL RDSREA ('WLVI', WLVI)

requests the subroutine RDSREA to extract the value of WLVI from the data file and assign it to the
variable WLVI. It does so by searching for the line: WLVI = <value> in the data file (in fact, the pro-
cedure is slightly different but that does not affect the understanding of the concept of the RD rou-
tines: the values are actually read from a temporary file which is created after syntax check and analysis
of the data file). An example datafile is given in Listing 4.1. Note that the comment lines are actually
part of the data file

Listing 4.1 Example datafile demonstrating various syntax forms

* example data file

N = 10 ! single value

BB = 0, 2, 4, 6 ! array of four elements

CCC = 10., 20., ! array continued on next line

 30., 40.

DD = 100*10. ! array of 100 elements

EE = 10.; FF = 20.; G = 30. ! more than one variable on a single line

Listing 4.2 reads the values of CCC, BB, EE, FF and N respectively from the above listed data file
INPUT.DAT. Also note that it is not necessary to read the values in the same sequence as they occur
on the file, just as it is not necessary to read every variable in the file. In the declarations section the
parameters ILBMAX and ILCMAX specify the declared lengths of the arrays BB and CC. A further ex-
planation is given below the listing.

8

Listing 4.2 Example illustrating the use of some RD routines.

* declarations

 INTEGER N,ILBMAX,ILB,ILCMAX,ILC

 PARAMETER (ILBMAX=100,ILCMAX=100)

 REAL EE,FF

 REAL BB(ILBMAX),CCC(ILCMAX)

* example of input section

 CALL RDINIT (30,40,'INPUT.DAT') <- Initialization of reading
 CALL RDSREA ('EE' ,EE) <- read single value
 CALL RDSREA ('FF' ,FF) <- read single value
 CALL RDAREA ('CCC',CCC,ILCMAX,ILC) <- read array
 CALL RDAREA ('BB' ,BB ,ILBMAX,ILB) <- read array
 CALL RDSINT ('N' ,N) <- read single value
 CLOSE (30) <- close reading

The statement:

CALL RDINIT (30, 40, 'INPUT.DAT')

calls the RDINIT routine that 1) opens the file INPUT.DAT using unit=31, 2) analyses the data file, 3)
creates a temporary file from the data file using unit=30, 4) closes the data file (leaving 30 used for the
temporary file !!), and 5) sends all error messages that have occurred to a log file (with unit=40). After
this RDINIT call, the numerical values (including arrays) can be acquired through several RD routines
from the library TTUTIL. Note that input sections starting with RDINIT cannot be nested (see Sec-
tion 8.1).

The values of two real variables EE and FF are read by means of two calls to RDSREA. The first ar-
gument of this subroutine is the name of the variable, written as a character constant. Using that name,
the routine RDSREA identifies the value to be assigned to the variable. So the character string in the
CALL should correspond to the variable name in the data file.

Routine RDAREA reads arrays of real values. In the above example it is called two times for reading the
arrays CCC and BB from file. Note that the declared length (=maximum length) is an input argument
of RDAREA and the actual array length is an output argument. Clearly, the number of values in the file
should not exceed the declared length. This is checked by the RD system and leads to a fatal error mes-
sage. Finally, the value of the single integer variable N is read using RDSINT. The CLOSE statement
disables reading from the datafile.

In the example of Listing 4.1 and Listing 4.2 only INTEGER and REAL datatypes are used. The
TTUTIL datafile syntax, however, allows several more datatypes (nl. DOUBLE PRECISION,
CHARACTER, LOGICAL, 'Date/time', and 'Missing' datatypes). In Listing 4.3 examples are given of
these datatypes.

Listing 4.3 Examples of other supported datatypes

D7 = .35D+3 ! DOUBLE PRECISION

L1 = .TRUE. ! LOGICAL

S3 = 'ABC'//'DEF'//'GHI'//'JKL' ! CONCATENATED STRINGS

DT14 = 26-DEC-1905_12:34:23.070 ! Absolute Date/time

AI = 1234, -, 1444 ! INTEGER array with one element missing

9

4.2 Reading tables and arrays with fixed lengths
Another very powerfull feature of TTUTIL is that data can be organised in tables, showing the con-
ceptual relationship among several variables. In Liting 4.4 a 'normal' datafile is shown:

Listing 4.4 Standard way of defining array values

THICKNESS = 10. , 30. , 50. , 70.

FIELD_CAP = 0.31, 0.33, 0.34, 0.38

But it can more elegantly and more clearly, be written as in Listing 4.5:

Listing 4.3 Tabular way of defining array values

THICKNESS FIELD_CAP

 10. 0.31

 30. 0.33

 50. 0.34

 70. 0.38

The RD calls to read this from first or the second datafile are identical as shown in Listing 4.6:

Listing 4.6 Program to read both formats of the datafile

 INTEGER MAX_NL, NL ! Maximum number of layers

 PARAMETER (MAX_NL=10)

 REAL THICKNESS(MAX_NL), FIELD_CAP(MAX_NL)

 ...

* read arrays

 CALL RDAREA ('THICKNESS', THICKNESS, MAX_NL, NL) ! determine # of layers

 CALL RDAREA ('FIELD_CAP', FIELD_CAP, MAX_NL, NL) ! check # of layers

This program reads exactly the same from the first or the second datafile. As was discussed earlier, the
RDAREA call reads a REAL array and returns the number of data found in the datafile. Often when
working with compartments or layers, several parameters have to be specified for each compartment or
layer. For instance in the example above, each soil layer needs to have a thickness and a water content at
field capacity. The 'tabular' way of organising this does provide protection against incomplete specifi-
cations (e.g. six thicknesses but five water contents). There is, however, a set of special CALL's that,
instead of returning the number of values, checks for a given number of values. This is the category of
RDF routines. The program in Listing 4.7 checks the number of elements of FIELD_CAP against the
number found in THICKNESS. The number of data elements is returned in the first RDAREA call
through NL, in the next call, to RDFREA, NL is the required number of data elements to be found.

Listing 4.7 Program that checks for same number of elements among soil arrays

 INTEGER MAX_NL, NL ! Maximum number of layers

 PARAMETER (MAX_NL=10)

10

 REAL THICKNESS(MAX_NL), FIELD_CAP(MAX_NL)

 ...

* read arrays

 CALL RDAREA ('THICKNESS', THICKNESS, MAX_NL, NL)

 CALL RDFREA ('FIELD_CAP', FIELD_CAP, MAX_NL, NL)

4.3 Using missing values
As shown in Listing 4.3 missing values can be defined by a '-' in the datafile. Dependent on the data-
type of the elements around the missing value (in case of an array), or the datatype of the call with
which the missing value is read, a missing value code is returned. (See the reference section on the de-
tails of these values). The user, however, can override the default return value of missing elements by
using a special call such as RDMREA (-300.). For each datatype, RDM routines are available to
modify the missing value behaviour. The defaults for missing values are restored for all datatypes at
once by a call to RDMDEF.

4.4 Getting information about a variable
In some cases you want information about a variable other than its value(s). For instance you might
want to know whether it is present in the datafile, its number of values, its datatype, or whether it is an
array or a scalar variable. Several routines are available to do just that, see the reference part of this
manual.

Probably the most common kind of information that is necessary in a program is to know whether a
variable exists at all in a datafile. Sometimes it is not absolutely required for a specific variable to be
available in a datafile, especially in cases where a default behaviour is wanted. For instance if output
options are defined in a datafile, we want the program to read them and behave accordingly. If output
options are not defined, default output options can be choosen. A special RD call exists to find out if a
variable exists in the datafile nl. RDINQR. This is demonstrated in Listing 4.8.

Listing 4.8 Program that finds out the presence of a variable and takes action accordingly

 LOGICAL RDINQR

 CHARACTER*80 WEATHER_DIRECTORY

 ...

 IF (RDINQR ('WEATHER_DIRECTORY')) THEN

* weather directory defined in data file

 CALL RDSCHA ('WEATHER_DIRECTORY',WEATHER_DIRECTORY)

 ELSE

* weather directory not defined in data file, use default path

 WEATHER_DIRECTORY = 'C:\SYS\WEATHER\'

 END IF

4.5 Range checks on input
Often the value of one or more elements in the datafile is restricted to a certain range (e.g. relative
humidities between 0 and 100%). The RD routines can check for this with several datatypes nl. REAL,
DOUBLE PRECISION and INTEGER (Date/Time not yet implemented). The RDSRER routine for

11

instance reads a single REAL and checks the value on the datafile against a lower and upper limit. If
the value is not within this range, an error will occur. In Listing 4.9 an example program is shown.

Listing 4.9 Program that checks the input of a REAL variable.

 REAL X

 ...

 CALL RDSRER ('X', 0., 100., X)

4.6 Making reruns with the RD routines
The use of the RD routines for input has the additional advantage of a built in ‘rerun facility’. Calcula-
tions often need to be carried out for different values of input variables. Suppose that something is cal-
culated using the input variables BB, EE and FF from the program described in Listing 4.2. Suppose
the calculations have to be repeated for different combinations of BB and EE. Then a so called rerun file
can be created by the user, containing the desired combinations of BB and EE. For example:

<start of rerun file RERUNS.DAT>
* example rerun file

BB = 1, 3, 5, 7 ; EE = 10. ! set 1

BB = 2, 4 ; EE = 10. ! set 2 (with a short array)

BB = 0, 2, 4, 6 ; EE = 30. ! set 3

BB = 1, 3, 5, 7, ! set 4 (with a long array)

 8, 9, 8, 9 ; EE = 30.

BB = 2, 4, 5, 7 ; EE = 30. ! set 5

<end of file>

A rerun file thus consists of sets of variables. The order of the variables should be identical in all sets. The
other syntax rules are identical to those of an ordinary data file. Actual array lengths may differ between
sets (see the example above). A great advantage of the rerun facility is that most of the program code
remains unchanged when a model is modified to be able to do reruns ! Listing 4.10 shows how this
works.

Listing 4.10 Program that demonstrates how to program a rerun loop

* open logfile and read rerun file

 CALL FOPENS (40,'RERUNS.LOG','NEW','DEL')

 CALL RDSETS (20,40,'RERUNS.DAT',INSETS)

* runs

 DO ISET = 0,INSETS

* select rerun set

 CALL RDFROM (ISET,.TRUE.)

* an ordinary input section:

 CALL RDINIT (30,40,'INPUT.DAT')

 CALL RDAREA ('BB' ,BB ,ILBMAX,ILB)

 CALL RDSREA ('EE' ,EE)

 CALL RDSREA ('FF' ,FF)

 CLOSE (30)

12

* calculations

 END DO

 CLOSE (20)

With a call to FOPENS a log file is opened, which is used for writing a report on rerun file usage. In
the call to RDSETS the rerun file is analysed and a short report is written to the log file (unit 40).
When the rerun file is not present or empty the output variable INSETS is set to zero. Otherwise the
number of rerun sets is returned in INSETS (in the above example there are 5 rerun sets). By means
of the call to RDFROM in the DO–loop, a certain set is selected. Selection of set zero means that the
contents of the original data file will be used. The input section for reading the values of BB, EE and
FF is just a usual input section for reading variables from a data file. The RD routines, however, internally
check whether reruns are being made and whether a non–zero set was selected. In that case, for vari-
ables occurring in the rerun file, the data file contents are replaced by the contents of the rerun file. Since
this is a rather hidden activity, each replacement is reported to the log file.

The file ‘RERUNS.DAT’ may be absent or present. If the file is absent, the above program section will
carry out only one run using the contents of the data file.

The rerun facility has a global character, i.e. variables stored in different data files may occur in a single
rerun file. Within the above DO–loop, for instance, the variables BB and EE could be read from differ-
ent input files by writing two separate input sections (each containing a call to RDINIT). As a conse-
quence, the use of identical variable names in different input files leads to problems when reruns are
made for that variable. Then the value of both variables will be replaced by the contents of the rerun
file. Both replacements will be reported to the produced log file. Before a rerun is started, a check is
done to see if all the variables of the preceding set were used. If this is not the case, it is assumed that
there is a typing error in the data files and the simulation is halted.

4.7 Note when using reruns and the RDINIT routine
In Listing 4.10 a rerun loop is made around some straightforward calculations. With each new rerun
loop, however, a call to RDINIT is made which would imply parsing and checking a datafile that is,
under most circumstances already parsed and checked. To avoid this inefficient behaviour, RDINIT
will recover the processed contents of a previous datafile from a .TMP file. The second RDINIT call
with the same datafile is therefore considerably faster than the first call.

In some cases, however, it is mandatory that the datafile is parsed and checked again, e.g. in cases
where a program generates datafiles for input to itself. In that case, instead of RDINIT, RDPARS calls
should be used that do not recover any previous information from .TMP files.

13

4.8 Summary of available interface calls

4.8.1 Routines for opening and closing files

RDINIT prepares new data file for reading, tries to recover previous ones
RDPARS prepares new data file for reading, never recovers previous ones
RDSETS prepares new rerun data file for reading, never recovers previous ones
RDFROM selects a specific rerun set from a rerun file
RDDTMP deletes .TMP files known to the RD system

4.8.2 Basic RD routines for reading data

Data type Single Unknown
length

Prescribed
length

Set value for
missing data

REAL RDSREA RDAREA RDFREA RDMREA
DOUBLE PRECISION RDSDOU RDADOU RDFDOU RDMDOU
INTEGER RDSINT RDAINT RDFINT RDMINT
CHARACTER RDSCHA RDACHA RDFCHA RDMCHA
LOGICAL RDSLOG RDALOG RDFLOG RDMLOG
DATE/TIME RDSTIM RDATIM RDFTIM RDMTIM

4.8.3 Routines that perform range checks

Data type Single Unknown length Prescribed length

REAL RDSRER RDARER RDFRER
DOUBLE PRECISION RDSDOR RDADOR RDFDOR
INTEGER RDSINR RDAINR RDFINR
CHARACTER not useful not useful not useful
LOGICAL not useful not useful not useful
DATE/TIME to be to be to be

14

15

5. Reference manual of data file syntax

5.1 Variable name syntax
Variable names in TTUTIL format data files can be up to 31 characters long. They are case-insensitive
and should begin with a letter (a-z). Letters (a-z), digits (0-9) and the underscore (_) character can be
used after the first letter. Variable names can occur more than once in rerun files, in standard datafiles,
however, they can occur only once.

Examples:
X = 5.

X_1 = 5.

X234567890123456789012345678901 = 5.

X23456789012345678901234567890_ = 5.

X2345678901234567_901234567890_ = 5.

abcdefg = 5.

Invalid examples:
3X = 5.

X&X@X = 5.

5.2 Definitions of data types

5.2.1 REAL and DOUBLE PRECISION data type

The specification of a REAL or DOUBLE PRECISION data type is very similar to how it would be
done in a Fortran program. Both contain one decimal point (.) and may have a positive or negative
exponent (denoted with an E or e for REAL's or D or d for DOUBLE PRECISION datatype). The
plus sign (+) is optional and indicates a positive number. The minus sign (-) is required to indicate a
negative number.

Although both floating point types have a different range and accuracy in Fortran programs we handle
them identically 'inside' the read routines of the TTUTIL library as a DOUBLE PRECISION data
type. In other words, a floating point number without an exponent or with an E exponent is stored
internally as a DOUBLE PRECISION number. When the user request for the value through a REAL
RD call, a conversion to REAL is done. They are stored in 8 bytes on the .TMP file.

So,
X1 = 5.

X2 = 5.E3

X3 = 5.D3

are all stored in the same way in the .TMP file. They can be requested through RDSREA and RDSDOU
calls.

The valid range for the REAL and DOUBLE PRECISION data type is:

-1.E+38 to -1.E-38, 0, 1.E-38 to 1.E+38

Up to 15 digits are decoded, more digits gives a 'loss of accuracy' error.

16

Examples
R1 = 3.

R2 = 3.5

R3 = 3.5E3

R4 = 0.35

R5 = -.35

R6 = .35E3

R7 = .35E+3

R8 = .35E+21

R9 = 0.123456789012345E-20

Invalid examples:
R1 = 3..

R2 = 3E3

5.2.2 INTEGER data type

Integers are stored in 4 bytes in the .TMP file. An integer is a whole number with no decimal point.
Integers may have positive and negative values, negative integers must begin with a minus sign (-). The
plus sign (+) is optional for positive integers.

The valid range for integers is between -2147483647 and +2147483647.

Examples:
I1 = 1

I2 = 1111111111

I3 = -4444

Invalid examples:
I1 = 0.

I2 = 92147483647

I3 = -2E0

5.2.3 LOGICAL data type

Logicals are stored in 4 bytes on the .TMP file. Their value should be either .TRUE. or .FALSE. (=case
insensitive).

Examples:
L1 = .TRUE.

L2 = .FALSE.

L3 = .TrUe.

L4 = .fAlSe.

Invalid examples:
L1 = TRUE

L2 = false

L3 = 'TrUe'

17

5.2.3 CHARACTER data type

The CHARACTER data type is defined in the data file in a manner similar to Fortran. They should be
between quotes and should have ASCII value between decimal 32 and 127. Separate character strings
can be concatenated to form one string with the // operator.

Examples:
S1 = 'A'

S2 = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

S3 = 'ABC'//'DEF'//'GHI'//'JKL'

Invalid examples:
S1 = A

S2 = 'Aàâäã'
S3 = 'ABC'+'DEF'+'GHI'+'JKL'

5.2.4 Date/time data type

Date/time data are stored in 8 bytes on the .TMP file. They are returned to the user as a DOUBLE
PRECISION data type. The integer part of the value is defined as the number of days since 1 January
1900, the fractional part corresponds to the fractional day (e.g. noon is 0.5).

The date/time data type consists of a date part and/or a time part. If both are defined they should be
separated with an underscore character (_).

Possible formats for the data part are:

jjjj/mm/dd e.g. 1994/08/31

jjjj-mm-dd e.g. 1994-08-31

dd/mmm/jjjj e.g. 3/sep/1994, also 3/september/1994

dd-mmm-jjjj e.g. 3-sep-1994, also 3-september-1994

Examples:
DT1 = 1905/12/26

DT2 = 1905-12-26

DT3 = 1905/0012/0026

DT4 = 26/DEC/1905

DT5 = 26-DEC-1905

DT6 = 26-decEMBER-1905

In the time part, at least hours and minutes should be available. The number of hours may exceed 24.

Possible formats are:
hh:mm e.g. 11:20

hh:mm:ss e.g. 11:20:45

hh:mm:ss.xxxxxxxxx e.g. 11:20:45.453

Examples:
DT7 = 12:34

DT8 = 12:34:23

DT9 = 12:34:23.070

18

DT10 = 25:34

DT11 = 25:34:23.070

Both date part and time can be combined into one value by the underscore character (_).

Examples:
DT12 = 26-DEC-1905_12:34

DT13 = 26-DEC-1905_12:34:23

DT14 = 26-DEC-1905_12:34:23.070

5.2.6 'Missing' data type

A value can be made missing by a dash character (-).

Examples:
M = -

See the RDMDEF routine for the default values.

5.2 Defining arrays
Arrays can be specified by repeating values of the same data type, separated by a comma, a space or an
end_of_line. Also arrays, or part of arrays, can be specified by a multiplication factor followed by the
asterisk '*' character. The data types of the elements of an array must be identical, except that the
Missing data type can occur in an array.

As has been discussed in Chapter 1, arrays can also be written as a table.

Examples:
A1 = 1234, -1, 1444, 10

A2 = 1234 -1 1444 10

A3 = 1234, -1,

 1444, 10

A4 = 100*1234, 10*-1, 1444, 10

A5 = 100*1234, -, 1444, 10

MTR MTD MTI MTL MTS MTDT

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

An array with just a single element is distinguished from a scalar value in one of the following ways:
� Use of a multiplier asterisk, as in:

A1 = 1 * 7.3
� When given as part as a table with at least two columns, as in:

A1 A2
5 7

A degenerate array (consisting of a single element) cannot be read by RDS* routines. Similarly, a scalar
value cannot be read by RDA* routines.

19

5.4 Comment lines
Comment lines start with '*' in the first column, or '!' in any column. The remainder of that line is
then ignored. They can occur anywhere in the program even in tables.

Examples:
* example

AI = 1234, -1, 1444, 10 ! first specification

AI = 1234 -1 1444 10

AI = 1234, -1, ! first specification<EOL>

 1444, 10

AI = 100*1234, 10*-1, 1444, 10

MTR MTD MTI MTL MTS MTDT

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070 ! first line

3. 3.D0 123 .TRUE. - 26-DEC-1905_12:34:23.070

* last line

3. 3.D0 - .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

5.5 Separation of specifications
Different specifications can be separated by the semicolon character ';'. Also an end_of_line when
followed by a variable name is a valid separator.

Examples:
EE1 = 10.; FF1 = 20.; G1 = 30. <EOL>

EE1 = 10. <EOL>

FF1 = 20. <EOL>

G1 = 30. <EOL>

20

21

6. The ENT routines

The usual way to obtain interactive input from the user is to write a question to the screen and to read
the answer from the screen. Exactly that is the function of the simple routines ENTCHA, ENTINT
and ENTREA. They can be used to ask for a character string, an integer value and a real value, respec-
tively. For instance, the statement

 CALL ENTREA ('Size of square',SIZE)

writes the question ‘Size of square’ to the screen and the number returned is assigned to the real vari-
able SIZE. Several such calls together form a relatively short program section for interactive input.
Successive questions are written neatly below each other and the cursor is always in column 53 of the
screen, independent of question length.

Somewhat less trivial are the subroutines ENTDCH, ENTDIN and ENTDRE. Again, the three rou-
tines are meant for entering a character string, an integer value or a real value, respectively. As an addi-
tional input argument, however, they accept a default value. The default value is returned to the calling
program when the user does not type in a new value and presses the <Enter> key only. The three
ENTD routines write the default value between square brackets following the question. For instance,
the statement

 CALL ENTDRE ('Size of square',2.300,SIZE)

causes the following line being written to the screen:

 Size of square [2.3]:

The user either supplies a new value or just presses <Return> to accept the default. Note that the sec-
ond argument (the default value) may also be a variable. The variable SIZE could be used, for instance,
as the second and third argument of ENTDRE. Than the (current) value of SIZE is used as the default
answer. In Section 5.1 the use of that trick to simplify testing of newly written subroutines is illustrated.

22

23

7. The OUT routines

The OUT routines can be used to generate neat output tables with a minimum of programming effort.
During calculations the name and value of a variable can be sent to routine OUTDAT which behaves
as a temporary output storage. It stores the received output in a temporary file. After completion of the
calculations, a table can be constructed from the gathered data by means of a special call to OUTDAT.
The table can be used as the final result or can be imported into a spreadsheet or a statistical program.

The use of OUTDAT is illustrated in the example program TEST below. A table and a printplot are
created of the sine and cosine of x between 0 and �.

01 PROGRAM TEST

02 IMPLICIT REAL (A-Z)

03 INTEGER IX

04 PARAMETER (PI=3.141597)

05

06 * initialize output ; X is independent

07 CALL OUTDAT (1, 20, 'X', 0.0)

08

09 DO 10 IX = 0,20

10 X = FLOAT(IX) * PI/20.0

11 SINX = SIN (X)

12 COSX = COS (X)

13 * repeated output calls

14 CALL OUTDAT (2, 0, 'X' , X)

15 CALL OUTDAT (2, 0, 'SINX', SINX)

16 CALL OUTDAT (2, 0, 'COSX', COSX)

17 10 CONTINUE

18

19 * table construction

20 CALL OUTDAT (4, 0, 'sine + cosine', 0.0)

21

22 * printplot contruction

23 CALL OUTPLT (1, 'SINX')

24 CALL OUTPLT (1, 'COSX')

25 CALL OUTPLT (7, 'sine + cosine')

26

27 * delete temporary

28 CALL OUTDAT (99, 0, ' ', 0.0)

29 STOP

30 END

Listing 7.1 shows the output produced by this example program. The first parameter of the routines
OUTDAT and OUTPLT is a task parameter. The first CALL to OUTDAT in line 7 of the above pro-
gram (with ITASK=1) specifies that X will be the independent variable and that unit=20 can be used
for the output file. Subsequent calls in lines 14,15 and 16 with ITASK=2 instruct OUTDAT to store
the incoming names and values in a temporary file (with unit=21). The number of values that can be
stored is only dependent on free disk space and not on RAM memory. The terminal call to

24

OUTDAT in line 20 (with ITASK=4) instructs the routine to create an output table using the infor-
mation stored in the temporary file. Dependent on the value of the task variable, different output for-
mats are chosen. Tab-delimited format (for a spreadsheet) can be generated with ITASK=5, two col-
umn format with ITASK=6. The string between quotes is written above the output table.

Lisitng 7.1 Output produced by example program TEST in the text.

 *--

 * Run no.: 1, (Table output)

 * sine + cosine

 X SINX COSX

 .00000 .00000 1.0000

 .15708 .15643 .98769

 .31416 .30902 .95106

 .47124 .45399 .89101

 .62832 .58779 .80902

 .78540 .70711 .70711

 .94248 .80902 .58778

 1.0996 .89101 .45399

 1.2566 .95106 .30902

 1.4137 .98769 .15643

 1.5708 1.0000 -0.19809E-05

 1.7279 .98769 -.15644

 1.8850 .95106 -.30902

 2.0420 .89101 -.45399

 2.1991 .80902 -.58779

 2.3562 .70710 -.70711

 2.5133 .58778 -.80902

 2.6704 .45399 -.89101

 2.8274 .30901 -.95106

 2.9845 .15643 -.98769

 3.1416 -0.45280E-05 -1.0000

 sine + cosine

 Variable Marker Minimum value Maximum value

 -------- ------ ------------- -------------

 SINX 1 -0.4528E-05 1.000

 COSX 2 -1.000 1.000

 Scaling: Common -1.000 1.000

 X

25

 .00000 I-------------------------------1-------------------------------2

 .15708 I I I 1 I 2

 .31416 I I I 1 I 2 I

 .47124 I I I 1I 2 I

 .62832 I I I I 1 2 I

 .78540 I I I I * I

 .94248 I I I I 2 1 I

 1.0996 I I I 2I 1 I

 1.2566 I I I 2 I 1 I

 1.4137 I I I 2 I 1

 1.5708 I-------------------------------2-------------------------------1

 1.7279 I I 2 I I 1

 1.8850 I I 2 I I 1 I

 2.0420 I I2 I I 1 I

 2.1991 I 2 I I I 1 I

 2.3562 I 2 I I I 1 I

 2.5133 I 2 I I I 1 I

 2.6704 I 2 I I 1I I

 2.8274 I 2 I I 1 I I

 2.9845 2 I I 1 I I

 3.1416 2-------------------------------1-------------------------------I

The calls to OUTPLT in line 23 and 24 (with ITASK=1) instruct the routine to put ‘SINX’ and
‘COSX’ in a graph (up to 25 variables can be printed per plot). The subsequent call with ITASK=7
causes OUTPLT to create the plot. Two different widths of the printplot are possible, 80 and 132 col-
umns, and two different types of scaling, a common scale and individual scales (see Table 7.1). The
process can be repeated to create several print plots based on the same output data. The final call to
OUTDAT (in line 28 with ITASK=99) deletes the temporary file.

Table 7.1 The task variable that should be supplied to OUTPLT to generate the different print plot types

Width
Scaling: 132 80

Individual 4 6

Common 5 7

26

27

8. Known problems

8.1 Illegal nesting of input sections
There are basically two types of input sections in the TTUTIL library. There are sections starting with
RDINIT or RDPARS and ending with CLOSE(unit), and there are sections starting with
RECREAD_INIT and ending with RECREAD_TERM. These input procedures cannot be nested
within themselves. For instance the following RDINIT, CLOSE(unit) input section is illegal (irrespec-
tive of the values of the unit numbers):

CALL RDINIT (20,40,’INPUT1.DAT’)

 <possible reading of values from file>

CALL RDINIT (30,40,’INPUT2.DAT’)

 <possible reading of values from file>

CLOSE (30)

 <possible reading of values from file>

CLOSE (20)

The same applies to input sections using the RECREAD_INIT, RECREAD_TERM routines. How-
ever, it is possible to nest RECREAD_INIT, RECREAD_TERM calls within an RDINIT,
CLOSE(unit) input section. The reverse is not possible.

All this applies equally to situations where input sections are within called subprograms. In general this
means that calls to large subprograms from within input sections should be avoided.

8.2 Closing RD* input files
The following erroneous construction is not yet properly detected by the RD* routines:

CALL RDINIT (20,40,’INPUT1.DAT’)

 <possible reading of values from file>

CLOSE (20)

OPEN(20,FILE=…)

<continue reading of values from file>

The illegal construction here is that unit 20 is closed and re-assigned to another file within the input
section. In this situation the RD routines do not give a proper error message.

8.3 Compiler specific problems

8.3.1 Digital Visual Fortran and Compaq Visual Fortran

Use of the function ILEN leads to the following warning, which should be ignored by the user:
Warning: Arguments' data types are incompatible with intrinsic procedure,

assume EXTERNAL. [ILEN]

28

8.3.2 All Macintosh MPW Fortran compilers

If a Fortran application is linked as an MPW tool, interactive screen input with the ENT* routines does
not work. A fix requiring a small change in ttutil routine ENTCHA is available from the authors. Most
programs which read a few values or strings from the keyboard will be linked as applications, however.
In that case there is no problem.

8.3.3 Macintosh Absoft Fortran 90 compiler

The use of the TTUTIL function LINT in Fortran 90 source code leads to problems with the Absoft
Fortran 90 compiler. It classifies LINT as an intrinsic function and gives an error message. This com-
piler bug is fixed by the inlusion of the following explicit interface in the subprogram in which LINT is
being used.

INTERFACE

 FUNCTION lint (Table, iltab, x)

 REAL :: lint

 INTEGER, INTENT(IN) :: lint

 REAL, DIMENSION(iltab), INTENT(IN) :: Table

 REAL, INTENT(IN) :: X

 END FUNCTION lint

END INTERFACE

The program may still be linked with a Fortran 77 compiled TTUTIL library. This problem may have
been solved in the latest version, Absoft Fortran Pro 6.0. We do not know yet.

29

9. Reference manual of interface calls

9.1 Reading of TTUTIL format datafiles

Routine: RDINIT

Purpose: Initializes a data file in TTUTIL data file format for subsequent reading with other RD
routines. Initialization consist of checking the syntax of the datafile (parsing), and gene-
ration of a temporary file from which actual reading can take place with the other RD
routines. If a datafile is initialized more than once with RDINIT, and the file for tem-
porary storage is not deleted by the user, then, for speed reasons, re-parsing will not
take place. If re-parsing must take place, then RDPARS should be used to initialize the
data file, instead of RDINIT.

Note that input sections starting with RDINIT or RDPARS cannot be nested (see
Section 8.1).

Usage: call RDINIT (IUNIT, IULOG, DATFIL)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDPARS, RDDTMP

Arguments: Meaning Data type I and/or O

IUNIT: Free unit number used to open random access file for I/O
(used for temporary storage), IUNIT+1 is used to open the
data file DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax
errors.
=0, Nothing is done with a logfile

I4 I

DATFIL: Name of data file to be read C*(*) I

30

Routine: RDPAR-S

Purpose: Initializes a data file in TTUTIL data file format for subsequent reading with other RD
routines. See RDINIT for a discussion on the difference between RDINIT and
RDPARS.

Note that input sections starting with RDINIT or RDPARS cannot be nested (see
Section 8.1).

Usage: call RDPARS (IUNIT, IULOG, DATFIL)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINIT, RDPARS

Arguments: Meaning Data type I and/or O

IUNIT: Free unit number used to open random access file for I/O
(used for temporary storage), IUNIT+1 is used to open the
data file DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax
errors.
=0, Nothing is done with a logfile

I4 I

DATFIL: Name of data file to be read C*(*) I

Routine: RDDTMP

Purpose: Deletes the temporary files created by the RD routines. In most situations all tempo-
raries can be deleted. The name of a possibly used rerun file is known locally in
RDDATA and there is a list of data files available which have been opened with
RDINIT. The TMP files belonging to this list are deleted as far as they are still there.

Usage: call RDDTMP (IUNIT)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINIT, RDPARS

Arguments: Meaning Data type I and/or O

IUNIT: Unit number used to delete the temporary files (should not
currently be assigned to any file)

I4 I

31

Routine: RDSETS

Purpose: Initializes the RD system for reading data from a so called ‘rerun file’ containing sets of
variable names with associated values. The sets are used to replace corresponding data
items in a normal data file analyzed with RDINIT or RDPARS and read with the
RDS*, RDA*, RDM*, or RDF* routines.

Usage: call RDSETS (IUNIT, IULOG, SETFIL, INS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINIT, RDPARS, RDFROM

Arguments: Meaning Data type I and/or O

IUNIT Free unit number used to open random access file for I/O
(used for temporary storage), IUNIT+1 is used to open the
data file DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax
errors.
=0, Nothing is done with a logfile

I4 I

SETFIL Name of rerun file containing sets. When an empty string is
supplied, the rerun facility is disactivated.

C*(*) I

INS Number of sets on file (when exists minimum 1) I4 O

Routine: RDFROM

Purpose: Instructs the RD system (and the user interfaces RDS*, RDA*, RDM*, and RDF*) to
use the IS-th set from the rerun file. Note that set 0 (zero) means that standard data file
values are used. Selecting set 0 does not require a previous call to RDSETS and set 0
may also be selected when no rerun file exists or when it is empty. Warnings are gener-
ated on non-used variables of the previous set. If desired this may result in a fatal error
(see FATAL). Moving from set 0 to another set, no check is carried out. See also
RDSETS.

Usage: call RDFROM (IS, FATAL)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSETS

Arguments: Meaning Data type I and/or O

IS =0, data file contents selected, disable replacement
>0, set number selected

I4 I

FATAL =.false., non-used variables gives text to logfile
=.true., non-used variables gives fatal error

L4 I

32

Routine: RDINQR

Purpose: Returns a flag for the presence of variable XNAME in the current data file. Presence
on rerun file of the variable is not determined.

Usage: <logical variable> = RDINQR (XNAME)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINQR2, RDINLV

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
RDINQR = .true., Variable occurs in current data file

=.false., Variable not present
L4 O

Routine: RDINQR2

Purpose: Returns a flag for the presence of variable XNAME in the current data file, if no rerun
set is selected, the variable is checked in the standard datafile, otherwise the variable is
looked up in the selected rerun set.

Usage: <logical variable> = RDINQR2 (XNAME)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINQR, RDINLV

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
RDINQR =.true., Variable occurs in selected data

=.false., Variable not present
L4 O

33

Routine: RDINLV

Purpose: Returns a list of variables, if no rerun set is selected, the names of the standard datafile
are returned, otherwise the names of the rerun file are returned.

Usage: call RDINLV (SETFLAG, VARLIS, VARLIS_MN, VARLIS_AN)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINQR, RDINQR2

Arguments: Meaning Data type I and/or O

SETFLAG Flag through which is indicated whether information from a
possibly active rerun set is wanted:
=.true., information from active set is returned
=.false., information from standard datafile is returned

L4 I

VARLIS Character array of dimension VARLIS_MN in which list of
variables is returned. Note that variable names in the data files
can be up to 31 characters wide. Declare the length of
VARLIS accordingly.

C*(*) O

VARLIS_MN Maximum number of names that can be returned I4 I
VARLIS_AN Actual number of variable names returned in list I4 O

Routine: RDINNE

Purpose: Returns number of elements of a variable, if no rerun set is selected, information from
the standard datafile is returned, otherwise information of the variable in the particular
rerun set is returned.

Usage: call RDINNE (VAR_NAME, NO_EL)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINLV

Arguments: Meaning Data type I and/or O

VAR_NAME Name for which information is requested C*(*) I
NO_EL Number of elements of VAR_NAME I4 O

34

Routine: RDINDT

Purpose: Returns the data type of a variable, if no rerun set is selected, information from the
standard datafile is returned, otherwise information of the variable in the particular
rerun set is returned. Returned data types can be:
I - Integer
F - Floating point
L - Logical
C - Character string
T - Date/time
- - Missing data type

Usage: call RDINDT (VAR_NAME, DATA_TYPE)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINLV

Arguments: Meaning Data type I and/or O

VAR_NAME Name for which information is requested C*(*) I
DATA_TYPE Data type of VAR_NAME C*(*) O

Routine: RDINAR

Purpose: Returns a flag whether a variable is an array in the datafile.
Usage: <logical variable> = RDINAR (VAR_NAME)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDINLV

Arguments: Meaning Data type I and/or O

VAR_NAME Name for which information is requested C*(*) I

Routine: RDSCHA

Purpose: Reads a single character string value from a TTUTIL format data file. The reading
should be initialized with RDINIT or RDPARS.

Usage: call RDSCHA (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

XNAME Name of variable to be read C*(*) I
X Value of variable C*(*) O

35

Routine: RDSDOU

Purpose: Reads a single DOUBLE PRECISION value from a TTUTIL format data file. The
reading should be initialized with RDINIT or RDPARS.

Usage: call RDSDOU (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSDOR

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R8 O

Routine: RDSINT

Purpose: Reads a single INTEGER value from a TTUTIL format data file. The reading should
be initialized with RDINIT or RDPARS.

Usage: call RDSINT (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSINR

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable I4 O

Routine: RDSLOG

Purpose: Reads a single LOGICAL value from a TTUTIL format data file. The reading should
be initialized with RDINIT or RDPARS.

Usage: call RDSLOG (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

XNAME: Name of variable C*(*) I
X: Value of variable L4 O

36

Routine: RDSREA

Purpose: Reads a single REAL value from a TTUTIL format data file. The reading should be
initialized with RDINIT or RDPARS.

Usage: call RDSREA (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSRER

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R4 O

Routine: RDSTIM

Purpose: Reads a single TIME value from a TTUTIL format data file. The reading should be
initialized with RDINIT or RDPARS.

Usage: call RDSTIM (XNAME, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R8 O

Routine: RDACHA

Purpose: Reads an array of CHARACTER values from a TTUTIL format data file. The reading
should be initialized with RDINIT or RDPARS. The number of values on file is re-
turned as IFND.

Usage: call RDACHA (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFCHA

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC C*(*) O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

37

Routine: RDADOU

Purpose: Reads an array of DOUBLE PRECISION values from a TTUTIL format data file.
The reading should be initialized with RDINIT or RDPARS. The number of values on
file is returned as IFND.

Usage: call RDADOU (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFDOU, RDADOR, RDFDOR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

Routine: RDAINT

Purpose: Reads an array of INTEGER values from a TTUTIL format data file. The reading
should be initialized with RDINIT or RDPARS. The number of values on file is re-
turned as IFND.

Usage: call RDAINT (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFINT, RDAINR, RDFINR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC I4 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

38

Routine: RDALOG

Purpose: Reads an array of LOGICAL values from a TTUTIL format data file. The reading
should be initialized with RDINIT or RDPARS. The number of values on file is re-
turned as IFND.

Usage: call RDALOG (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFLOG

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC L4 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

Routine: RDAREA

Purpose: Reads an array of REAL values from a TTUTIL format data file. The reading should
be initialized with RDINIT or RDPARS. The number of values on file is returned as
IFND.

Usage: call RDAREA (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFREA, RDARER, RDFRER

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R4 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

39

Routine: RDATIM

Purpose: Reads an array of TIME values from a TTUTIL format data file. The reading should
be initialized with RDINIT or RDPARS. The number of values on file is returned as
IFND.

Usage: call RDATIM (XNAME, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFTIM

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

Routine: RDFCHA

Purpose: Reads a fixed number of elements into a CHARACTER array from a TTUTIL format
data file. Data file reading should be initialized with RDINIT or RDPARS. A number
of values on file different from IVALS results in an error message.

Usage: call RDFCHA (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDACHA

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC C*(*) O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

40

Routine: RDFDOU

Purpose: Reads a fixed number of elements into a DOUBLE PRECISION array from a
TTUTIL format data file. Data file reading should be initialized with RDINIT or
RDPARS. A number of values on file different from IVALS results in an error
message.

Usage: call RDFDOU (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDADOU, RDADOR, RDFDOR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

Routine: RDFINT

Purpose: Reads a fixed number of elements into an INTEGER array from TTUTIL format
data. Data file reading should be initialized with RDINIT or RDPARS. A number of
values on file different from IVALS results in an error message.

Usage: call RDFINT (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAINT, RDAINR, RDFINR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC I4 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

41

Routine: RDFLOG

Purpose: Reads a fixed number of elements into a LOGICAL array from TTUTIL format data.
Data file reading should be initialized with RDINIT or RDPARS. A number of values
on file different from IVALS results in an error message.

Usage: call RDFLOG (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDALOG

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC L4 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

Routine: RDFREA

Purpose: Reads a fixed number of elements into a REAL array from TTUTIL format data. Data
file reading should be initialized with RDINIT or RDPARS. A number of values on
file different from IVALS results in an error message.

Usage: call RDFREA (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAREA, RDARER, RDFRER

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R4 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

42

Routine: RDFTIM

Purpose: Reads a fixed number of elements into a TIME array from TTUTIL format data. Data
file reading should be initialized with RDINIT or RDPARS. A number of values on
file different from IVALS results in an error message.

Usage: call RDFTIM (XNAME, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDATIM

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

Routine: RDADOR

Purpose: Reads an array of DOUBLE PRECISION values from a TTUTIL format data file and
carries out a range check on the returned values. The reading should be initialized with
RDINIT or RDPARS. The number of values on file is returned as IFND. If a value on
the datafile is missing and the value for missing data that will be returned by this rou-
tine is outside the valid range, then this is not flagged.

Usage: call RDADOR (XNAME, XMIN, XMAX, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDADOU, RDFDOU, RDFDOR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value R8 I
XMAX Maximum acceptable value R8 I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

43

Routine: RDAINR

Purpose: Reads an array of INTEGER values from a TTUTIL format data file and carries out a
range check on the returned values. The reading should be initialized with RDINIT or
RDPARS. The number of values on file is returned as IFND. If a value on the datafile
is missing and the value for missing data that will be returned by this routine is outside
the valid range, then this is not flagged.

Usage: call RDAINR (XNAME, XMIN, XMAX, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAINT, RDFINT, RDFINR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value I4 I
XMAX Maximum acceptable value I4 I
X Array itself of dimension ILDEC I4 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

Routine: RDARER

Purpose: Reads an array of REAL values from a TTUTIL format data file and carries out a
range check on the returned values. The reading should be initialized with RDINIT or
RDPARS. The number of values on file is returned as IFND. If a value on the datafile
is missing and the value for missing data that will be returned by this routine is outside
the valid range, then this is not flagged.

Usage: call RDARER (XNAME, XMIN, XMAX, X, ILDEC, IFND)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAREA, RDFREA, RDFRER

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value R4 I
XMAX Maximum acceptable value R4 I
X Array itself of dimension ILDEC R4 O
ILDEC Declared length of X I4 I
IFND Number of values found on file I4 O

44

Routine: RDFDOR

Purpose: Reads a fixed number of elements into a DOUBLE PRECISION array from a
TTUTIL format data file and carries out a range check on the returned values. Data file
reading should be initialized with RDINIT or RDPARS. A number of values on file
different from IVALS results in an error message. If a value on the datafile is missing
and the value for missing data that will be returned by this routine is outside the valid
range, then this is not flagged.

Usage: call RDFDOR (XNAME, XMIN, XMAX, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDADOU, RDFDOU, RDADOR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value R8 I
XMAX Maximum acceptable value R8 I
X Array itself of dimension ILDEC R8 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

Routine: RDFINR

Purpose: Reads a fixed number of elements into an INTEGER array from a TTUTIL format
data file and carries out a range check on the returned values. Data file reading should
be initialized with RDINIT or RDPARS. A number of values on file different from
IVALS results in an error message. If a value on the datafile is missing and the value
for missing data that will be returned by this routine is outside the valid range, then this
is not flagged.

Usage: call RDFINR (XNAME, XMIN, XMAX, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAINT, RDFINT, RDAINR

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value I4 I
XMAX Maximum acceptable value I4 I
X Array itself of dimension ILDEC I4 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

45

Routine: RDFRER

Purpose: Reads a fixed number of elements into a REAL array from a TTUTIL format data file
and carries out a range check on the returned values. Data file reading should be initial-
ized with RDINIT or RDPARS. A number of values on file different from IVALS
results in an error message. If a value on the datafile is missing and the value for miss-
ing data that will be returned by this routine is outside the valid range, then this is not
flagged.

Usage: call RDFRER (XNAME, XMIN, XMAX, X, ILDEC, IVALS)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDAREA, RDFREA, RDARER

Arguments: Meaning Data type I and/or O

XNAME Name of array, for which data are on file C*(*) I
XMIN Minimum acceptable value R4 I
XMAX Maximum acceptable value R4 I
X Array itself of dimension ILDEC R4 O
ILDEC Declared length of X I4 I
IVALS Number of values to be present on file I4 I

Routine: RDSDOR

Purpose: Reads a single DOUBLE PRECISION value from a TTUTIL format data file and
carries out a range check on the returned value. The reading should be initialized with
RDINIT or RDPARS. If a value on the datafile is missing and the value for missing
data that will be returned by this routine is outside the valid range, then this is not
flagged.

Usage: call RDSDOR (XNAME, XMIN, XMAX, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSDOU

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
XMIN Minimum acceptable value R8 I
XMAX Maximum acceptable value R8 I
X Value of variable R8 O

46

Routine: RDSINR

Purpose: Reads a single INTEGER value from a TTUTIL format data file and carries out a
range check on the returned value. The reading should be initialized with RDINIT or
RDPARS. If a value on the datafile is missing and the value for missing data that will
be returned by this routine is outside the valid range, then this is not flagged.

Usage: call RDSINR (XNAME, XMIN, XMAX, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSINT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
XMIN Minimum acceptable value I4 I
XMAX Maximum acceptable value I4 I
X Value of variable I4 O

Routine: RDSRER

Purpose: Reads a single REAL value from a TTUTIL format data file and carries out a range
check on the returned value. The reading should be initialized with RDINIT or
RDPARS. If a value on the datafile is missing and the value for missing data that will
be returned by this routine is outside the valid range, then this is not flagged.

Usage: call RDSRER (XNAME, XMIN, XMAX, X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDSREA

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
XMIN Minimum acceptable value R4 I
XMAX Maximum acceptable value R4 I
X Value of variable R4 O

Routine: RDMDEF

Purpose: Resets the value returned for missing data to the default values. Being –99.99 for reals,
-99 for integers, -99.99D00 for double precision and date/time variables, ‘- MISSING -
’ for character strings, and .FALSE. for logicals.

Usage: call RDMDEF
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMCHA, RDMREA, RDMDOU, RDMINT, RDMLOG, RDMTIM

Arguments: Meaning Data type I and/or O

none

47

Routine: RDMCHA

Purpose: Sets the value to be returned for missing CHARACTER strings.
Usage: call RDMCHA (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

C*(*) I

Routine: RDMDOU

Purpose: Sets the value to be returned for missing DOUBLE PRECISION reals.
Usage: call RDMDOU (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

R8 i

Routine: RDMINT

Purpose: Sets the value to be returned for missing INTEGERs.
Usage: call RDMINT (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

I4 I

48

Routine: RDMLOG

Purpose: Sets the value to be returned for missing LOGICALs.
Usage: call RDMLOG (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

L4 I

Routine: RDMREA

Purpose: Sets the value to be returned for missing REALs.
Usage: call RDMREA (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

R4 I

Routine: RDMTIM

Purpose: Sets the value to be returned for missing DATE/TIME.
Usage: call RDMTIM (X)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDMDEF

Arguments: Meaning Data type I and/or O

X Missing value to be returned when a value is missing on the
data file

R8 I

49

9.2 Writing of TTUTIL format datafiles

Routine: WRINIT

Purpose: Initializes the WR system to write data in TTUTIL format to a datafile. The specified
file is left open for writing by the other WR routines. After closing the file, it can be
reread with the RDINIT or RDPARS routine.

Usage: call WRINIT (UNIT_X, FILE)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

UNIT_X Unit number to open file with I4 I
FILE File name to use for output C*(*) I

Routine: WRACHA

Purpose: Writes the character array XNAME to the output file in TTUTIL format. The output
file has to be openened first with WRINIT.

Usage: call WRACHA (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC C*(*) I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

50

Routine: WRADOU

Purpose: Writes the double precision array XNAME to the output file in TTUTIL format. The
output file has to be openened first with WRINIT.

Usage: call WRADOU (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC R8 I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

Routine: WRAINT

Purpose: Writes the integer array XNAME to the output file in TTUTIL format. The output file
has to be openened first with WRINIT.

Usage: call WRAINT (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC I4 I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

Routine: WRALOG

Purpose: Writes the logical array XNAME to the output file in TTUTIL format. The output file
has to be openened first with WRINIT.

Usage: call WRALOG (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC L4 I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

51

Routine: WRAREA

Purpose: Writes the real array XNAME to the output file in TTUTIL format. The output file
has to be openened first with WRINIT.

Usage: call WRAREA (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC R4 I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

Routine: WRATIM

Purpose: Writes the date/time array XNAME to the output file in TTUTIL format. The output
file has to be openened first with WRINIT.

Usage: call WRATIM (XNAME, X, ILDEC, IFND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Array with values of dimension ILDEC R8 I
ILDEC Declared length of X I4 I
IFND Number of values to write to file I4 I

Routine: WRSCHA

Purpose: Writes a single CHARACTER value to a data file. The output file has to be openened
first with WRINIT.

Usage: call WRSCHA (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable C*(*) I

52

Routine: WRSDOU

Purpose: Writes a single DOUBLE PRECISION value to a data file. The output file has to be
openened first with WRINIT.

Usage: call WRSDOU (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R8 I

Routine: WRSINT

Purpose: Writes a single INTEGER value to a data file. The output file has to be openened first
with WRINIT.

Usage: call WRSINT (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable I4 I

Routine: WRSLOG

Purpose: Writes a single LOGICAL value to a data file. The output file has to be openened first
with WRINIT.

Usage: call WRSLOG (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable L4 I

53

Routine: WRSREA

Purpose: Writes a single REAL value to a data file. The output file has to be openened first with
WRINIT.

Usage: call WRSREA (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R4 I

Routine: WRSTIM

Purpose: Writes a single date/time value to a data file. The output file has to be openened first
with WRINIT.

Usage: call WRSTIM (XNAME, X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WRINIT

Arguments: Meaning Data type I and/or O

XNAME Name of variable C*(*) I
X Value of variable R8 I

9.3 Interactive input

Routine: ENTCHA

Purpose: Interactive entry of a character string. Writes the text QUEST on screen as a ‘question’
and returns the entered string to the calling program.

Usage: call ENTCHA (QUEST, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTDCH

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
X Entered character string C*(*) O

54

Routine: ENTDCH

Purpose: Interactive entry of a CHARACTER string with a default. Writes the text QUEST on
screen as a ‘question’ and returns the entered string to the calling program.

Usage: call ENTDCH (QUEST, SDEF, S)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTCHA

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
SDEF Default string, assumed when <Return> is given C*(*) I
S Entered CHARACTER string C*(*) O

Routine: ENTINT

Purpose: Interactive entry of an INTEGER number Writes the text QUEST on screen as a
‘question’ and returns the entered number to the calling program.

Usage: call ENTINT (QUEST, IX)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTDIN

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
IX Entered number I4 O

Routine: ENTDIN

Purpose: Interactive entry of an INTEGER number with a default. Writes the text QUEST on
screen as a ‘question’ and returns the entered number to the calling program.

Usage: call ENTDIN (QUEST, IXDEF, IX)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTINT

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
IXDEF Default value assumed when <Return> is given I4 I
IX Entered INTEGER number I4 O

55

Routine: ENTREA

Purpose: Interactive entry of a REAL number. Writes the text QUEST on screen as a ‘question’
and returns the entered number to the calling program.

Usage: call ENTREA (QUEST, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTDRE

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
X Entered REAL number R4 O

Routine: ENTDRE

Purpose: Interactive entry of a REAL number with a default. Writes the text QUEST on screen
as a ‘question’ and returns the entered number to the calling program.

Usage: call ENTDRE (QUEST, XDEF, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ENTREA

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
XDEF Default value assumed when <Return> is given R4 I
X Entered REAL number R4 O

Routine: ENTDOU

Purpose: Interactive entry of a DOUBLE PRECISION number. Writes the text QUEST on
screen as a ‘question’ and returns the entered number to the calling program.

Usage: call ENTDOU (QUEST, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTDDO

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance ‘Give the value for P’ C*(*) I
X Entered DOUBLE PRECISION number R8 O

56

Routine: ENTDDO

Purpose: Interactive entry of a DOUBLE PRECISION number with a default. Writes the text
QUEST on screen as a ‘question’ and returns the entered number to the calling
program.

Usage: call ENTDDO (QUEST, XDEF, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTDOU

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
XDEF Default value assumed when <Return> is given R8 I
X Entered DOUBLE PRECISION number R8 O

Routine: ENTYNO

Purpose: Interactive entry of a boolean Yes / No, given by hitting a single Y or N key. Writes
the text QUEST on screen as a ‘question’ and returns the entered value to the calling
program. A ‘Y’ is returned as a .TRUE., a ‘N’ as .FALSE..

Usage: CALL ENTYNO (QUEST, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTDYN

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
X .TRUE. when Y was entered, .FALSE. when N was entered L4 O

Routine: ENTDYN

Purpose: Interactive entry of a boolean Yes / No, given by hitting a single Y or N key, with a
default. Writes the text QUEST on screen as a ‘question’ and returns the entered value
to the calling program. A ‘Y’ is returned as a .TRUE., a ‘N’ as .FALSE..

Usage: call ENTDYN (QUEST, XDEF, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTYNO

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
XDEF Default value assumed when <Return> is given L4 I
X .TRUE. when Y was entered, .FALSE. when N was entered L4 O

57

Routine: ENTTIM

Purpose: Interactive entry of a date / time value. Writes the text QUEST on screen as a
‘question’ and returns the entered number to the calling program. Allowed formats are
given in Section 5.2.5.

Usage: call ENTTIM (QUEST, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTDTI, date and time routines in Section 9.11.

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
X Entered Date / Time value R8 O

Routine: ENTDTI

Purpose: Interactive entry of a date / time value with a default. Writes the text QUEST on
screen as a ‘question’ and returns the entered data / time to the calling program.
Allowed formats are given in Section 5.2.5.

Usage: call ENTDTI (QUEST, XDEF, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 1-July-1999
See also: ENTTIM, date / time routines in Section 5.2.5.

Arguments: Meaning Data type I and/or O

QUEST Character string, for instance 'Give the value for P' C*(*) I
XDEF Default value assumed when <Return> is given R8 I
X Entered Date / Time value R8 O

58

9.4 Output to file

Routine: COPFL2

Purpose: Copies the contents of a file to an output file with unit number IOUT (the output file
should already be open and is left open). The input file is opened by COPFL2 and
closed after the contents has been copied. If the input file does not exist, nothing is
done.

Usage: call COPFL2 (IIN, FILE, IOUT, HEADER)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WR* routines

Arguments: Meaning Data type I and/or O

IIN Unit number to be used to open input file with I4 I
FILE File name of input file C*(*) I
IOUT Unit number of file where input file should be copied to I4 I
HEADER Flags if information header should be written to the output

file:
=.true., header is written
=.false., header is not written

L4 I

Routine: OUTAR2

Purpose: This routine transfers the contents of an array to the subroutine OUTDAT which can
handle only single names and values. The OUTAR2 call works like a series of calls to
OUTDAT with single array elements. For example the following calls to OUTDAT:
CALL OUTDAT (2,0,’ A(1) ’,A(1))
CALL OUTDAT (2,0,’ A(2) ’,A(2))
CALL OUTDAT (2,0,’ A(3) ’,A(3))
can be abbreviated by a single call with OUTAR2:
CALL OUTAR2 (‘A’,A,1,3,1,3)
Array subscripts between –99 and 999 are accepted.

Usage: call OUTAR2 (NAME, ARRAY, LDEC, UDEC, LST, UST)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: OUTDAT, OUTPLT

Arguments: Meaning Data type I and/or O

NAME Name of array to be written C*(*) I
ARRAY Array itself of at least dimension I2 R4 I
LDEC Lower declared bound of ARRAY I4 I
UDEC Upper declared bound of ARRAY I4 I
I1 Array element where output should start I4 I
I2 Array element where output should finish I4 I

59

Routine: OUTCOM

Purpose: Stores a text string which is written to the output file generated by OUTDAT. A
maximum number of 25 strings of 80 characters can be stored. Repeated input of the
same string is neglected. For example:
CALL OUTCOM ('Potential production')
CALL OUTCOM ('and water limited production')
CALL OUTDAT (4, 0, 'Final output',0.)
both text strings will appear in the final output file.

Usage: call OUTCOM (STR)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: OUTDAT, OUTPLT

Arguments: Meaning Data type I and/or O

STR Text string C*(*) I

Routine: OUTDAT

Purpose: Can be used to generate output tables in files from within simulation models. It should
be initialized first, to define the name of the independent variable (the variable printed
in the leftmost column) and to set unit numbers (ITASK=1). The name and value of
the data are stored by a series of calls with ITASK=2. Each call supplies one name and
value to the OUTDAT system. The stored data can be converted to an output file by a
call with ITASK=4, 5, or 6. Storage, prior to generating a table is on disk. A maximum
of 500 names can be stored, the number of values depends on free disk space.

After generation of the output, OUTDAT is ready to be initialized again, if necessary
with another independent variable. This initialization, storing of and creation of the
output table may be repeated many times. Another possibility is to repeatedly initialize
OUTDAT (ITASK=1) and store data (ITASK=2) but to have all the output tables
created by a single call to OUTDAT shortly before termination of the program. In that
case ITASK values of 14, 15 and 16 should be used.

If the reruns are carried out with the RD system, then the selected set number will be
printed above the generated output tables.

Usage: CALL OUTDAT (ITASK, IUNIT, VARNAME, VARVALUE)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: OUTPLT

60

Arguments: Meaning Data type I and/or O

ITASK =1, Initializes the OUTDAT system, opens a temporary file
for storage and stores the name of the independent variable
and the unit numbers for file I/O. OUTDAT may be reini-
tialized after an output ‘session’, even with a new independent
variable name.
=2, Stores the name and value of the variable in the tempo-
rary file.
=3, Selects the variables for writing to the output file.
=4, Generates an output table in the output file, the inde-
pendent variable and the first 8 dependent variables in the first
block of output, the independent variable and the second set
of 8 variables in the second block etc. untill all variables have
been printed.
=5, Generates a similar table, but now the values and names
are separed by tab characters and the output blocks have a
maximum of 100 independent variables. This output is useful
for importing in spreadsheets.
=6, Generates a two column output table, the independent
variable and the first dependent variable. Below that the inde-
pendent variable and the second dependent variable etc.
=14,Creates output tables like ITASK=4 but now for all sets
in the temporary output file.
=15, idem 14 but now with spreadsheet output
=16, idem 14 but now with two column output

C*(*) I

IUNIT Unit number used for writing to output file. If the unit defined
during ITASK=1 is open this is used for output. Otherwise a
file RES.DAT using that unit is created. IUNIT+1 is used for
I/O to the temporary file.

I I

VARNAME String, name of variable or meaningfull text, (up to 36 charac-
ters will be used). If ITASK is 4, 5, 6, 14, 15, or 16 this string
will be written to the output file as title (not limited to 36 char-
acters then).

C*(*) I

VARVALUE Value of variable (only used at ITASK=2). R4 I

61

Routine: OUTPLT

Purpose: Designed to be used in conjunction with OUTDAT, which is used to write variable
names and values to a temporary file. OUTPLT is used to printplot a selection of the
stored variables. By repeated calls to the OUTPLT subroutine with ITASK=1, names
of variables for which the plot is wanted can be given to the subroutine. By a call with
ITASK=4, 5, 6, or 7, printplots are generated with a width of 80 or 132 characters,
either with individual scaling or with common scaling (all variables scaled to the small-
est and largest value in the data set). The printplot pertains to the last set of the tempo-
rary file. If one wants multiple plots for all sets in the temporary file, ITASK values of
14, 15, 16 or 17 should be used. For example, define DTGA and WSO to be plotted
and create printplot using wide format, common scaling:
CALL OUTPLT (1,'DTGA')
CALL OUTPLT (1,'WSO')
CALL OUTPLT (5,'Plot title')

Usage: call OUTPLT (ITASK, RN)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: OUTDAT

Arguments: Meaning Data type I and/or O

ITASK Defines task of the subroutine:
=1, instruct the routine to store variable names for use in the
printplot
=4, wide format, individual scale plot of last set
=5, wide format, common scale plot of last set
=6, small format, individual scale plot of last set
=7, small format, common scale plot of last set
=14,wide format, individual scale plot of all sets
=15,wide format, common scale plot of all sets
=16, small format, individual scale plot of all sets
=17, small format, common scale plot of all sets
If the unit defined during ITASK=1 of OUTDAT is open,
this is used for output. Otherwise a file 'res.dat' with that unit
is created.

I4 I

RN when ITASK = 1: name of variable to be plotted, up to 36
characters will be used. The value of the variable must have
been stored by previous calls to OUTDAT. When ITASK
<>1 the text is printed above the plot(s).

C*(*) I

62

Routine: OUTSEL

Purpose: Performs a sequence of OUTDAT calls in order to generate the table(s) specified in
the variable selection array PRSEL. When there are no variables selected, a single call
to OUTDAT produces table(s) using default variable order. This routine avoids having
to do multiple calls to OUTDAT to select variable to appear in the output

Usage: call OUTSEL (PRSEL, IMNPRS, INPRS, IPFORM, MESSAG)
Author(s): Daniël van Kraalingen, Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: OUTDAT

Arguments: Meaning Data type I and/or O

PRSEL Character string array with names of selected variables C*(*) I
IMNPRS Declared length of array PRSEL I4 I
INPRS Used length of array PRSEL I4 I
IPFORM Controls OUTDAT table format (see OUTDAT header) I4 I
MESSAG Text message for OUTDAT call C*(*) I

9.5 File and unit handling

Routine: DELFIL

Purpose: Deletes the specified file name and can (if flag is turned on) give an error if the file
does not exist

Usage: call DELFIL (FILE_NAME, ERR)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FLEXIST

Arguments: Meaning Data type I and/or O

FILE_NAME Name of file to be deleted C*(*) I
ERR If .TRUE. causes fatal error when the file does not exist L4 I

63

Routine: EXTENS

Purpose: Changes extension of filename. Output filename is in uppercase characters. The old
extension is the part of the filename that follows a dot in the filename (.). A dot within
a directory name is neglected (bracket], colon :, backslash \, slash / on VAX,
Macintosh, MS-DOS and Unix respectively). The input filename does not necessarily
has to have an extension. For example:
FILEIN NEWEXT FILEOU
Name dat NAME.DAT
Name.datlog NAME.LOG
Name.datlog NAME.LOG
Name.dat. NAME
DISK$USER:[AC.MINE]Name dat DISK$USER:[AC.MINE]NAME.DAT
HD:Mine.Old:Name dat HD:MINE.OLD:NAME.DAT
C:\MINE.OLD\Name dat C:\MINE.OLD\NAME.DAT
D:/MINE.OLD/Name dat D:/MINE.OLD/NAME.DAT

Usage: call EXTENS (FILEIN, NEWEXT, ICHECK, FILEOU)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FOPENS

Arguments: Meaning Data type I and/or O
FILEIN Input filename with old or without extension C*(*) I
NEWEXT New extension, is set to uppercase C*(*) I
ICHECK =1, check on equal output and input extension

=0, no check
I4 I

FILEOU Output filename with new extension in uppercase C*(*) O

Routine: FLEXIST

Purpose: Returns a flag whether the supplied filename exists
Usage: <logical variable> = FLEXIST (FILE_NAME)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DELFIL

Arguments: Meaning Data type I and/or O

FILE_NAME Filename to check C*(*) I
FLEXIST Flag whether file exists or not L4 O

64

Routine: FLNAME

Purpose: Prepares file name for opening (for now only carries out a LOWERC call). This rou-
tine is called inside from TTUTIL from every routine which accepts a file name. This
routine ensures that conflicts will not arise on file systems which are case sensitive.

Usage: call FLNAME (STRING)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FOPENS

Arguments: Meaning Data type I and/or O

STRING File name to be processed C*(*) I/O

Routine: FOPENG

Purpose: Opens formatted, unformatted or binary files with sequential or direct access. Using
FOPENG garantees portability on platforms which have a case sensitive file system.
This is achieved by a lowercase operation of the file name inside the FOPENG rou-
tine. For example:

CALL FOPENG (20,'a.dat','old','fs',0,' ')
Opens an existing formatted sequential file.

CALL FOPENG (20,'a.dat','new','ud',10,'unk')
Creates a new, unformatted, direct access file with a record length of 10 bytes ; in case
a file a.dat already exists the routine needs either permission to overwrite or a new file-
name

CALL FOPENG (20,'a.dat','new','ud',10,'del')
Creates new, unformatted, direct access file with a record length of 10 bytes ; a possibly
existing file a.dat is deleted

Usage: call FOPENG (IUNIT, FILNAM, STATUS, TYPE, IRECL, PRIV)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FOPENS

Arguments: Meaning Data type I and/or O

IUNIT Unit number used to open file I4 I
FILNAM Name of the file to be opened. Inside FOPENG, FILNAM is

converted to lowercase.
C*(*) I

STATUS Status of the file
='old', existing file is opened
='new', new file is created (see PRIV)
='rdo', existing file is opened with write protection ; this
only works on the VAX, on other machines RDO=OLD

C*(*) I

TYPE String containing code for FORM keyword (F,U or B) and C*(*) I

65

code for ACCESS keyword (S or D).
='F', formatted file
='U', unformatted file
='B',binary filetype (Microsoft Fortran only)
='S', sequential access
='D', direct access

IRECL Record length of direct access files in BYTES (see also
machine dependent parameter IWLEN below) may be dummy
value in case of sequential files

I4 I

PRIV Privilege ; in case status='new' and file exists:
='del', old file is overwritten
='nod', old file saved, program stopped
='unk', in case file exists, one may either overwrite it or give
a new filename (interactive choice)

C*(*) I

Routine: FOPENS

Purpose: Opens a formatted, sequential file (the normal ascii text files) by internally calling
FOPENG. See FOPENG for details pertaining to formatted sequential files. For
example:

CALL FOPENS (20,'a.dat','old',' ')
Opens an existing formatted sequential file

CALL FOPENS (20,'a.dat','new','unk')
Creates a new, formatted, sequential file ; in case a file a.dat already exists the routine
asks permission to overwrite.

CALL FOPENS (20,'a.dat','new','del')
Creates new, formatted, sequential file ; a possibly existing file a.dat is deleted

Usage: call FOPENS (IUNIT, FILNAM, STATUS, PRIV)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FOPENG

Arguments: Meaning Data type I and/or O

IUNIT Unit number used to open file I4 I
FILNAM Name of the file to be opened C*(*) I
STATUS Status of the fileI

='old', existing file is opened
='new', new file is created (see PRIV)
='rdo', existing file is opened with write protection ; this
only works on the VAX, on other machines RDO=OLD

C*(*) I

PRIV Privilege, in case status='new' and file exists:
='del', old file is overwritten
='nod', old file saved, program stopped
='unk' in case file exists, one may either overwrite it or give
a new filename (interactive choice)

C*(*) I

66

Routine: GETUN

Purpose: Gets a free unit number within range IST and IEND (inclusive), an error occurs if a
free unit number cannot be found.

Usage: <integer variable> = GETUN (IST, IEND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: GETUN2, USEDUN

Arguments: Meaning Data type I and/or O

IST Unit number where search should start I4 I
IEND Idem where search should end I4 I
GETUN Returned free unit number I4 O

Routine: GETUN2

Purpose: Gets a range of NUM free unit number within range IST and IEND (inclusive). An
error occurs If a free unit number cannot be found.

Usage: <integer variable> = GETUN2 (IST, IEND, NUM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: GETUN, USEDUN

Arguments: Meaning Data type I and/or O

IST Unit number where search should start I4 I
IEND Idem where search should end I4 I
NUM Number of required consecutive free unit numbers I4 I
GETUN2 First of sequence of free unit numbers I4 O

Routine: USEDUN

Purpose: Checks a range of unit numbers whether they are in use for file i/o. Checking starts at
the value of IST and ends at the value of IEND (inclusive). If that unit is used, a report
on which file uses which unit is written to the screen. If IST is greater than IEND, the
search goes from high numbers to low numbers.

Usage: call USEDUN (IST, IEND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: GETUN, GETUN2

Arguments: Meaning Data type I and/or O

IST Unit number where to start search I4 I
IEND Unit number where to end search I4 I

67

9.6 Character string handling

Routine: ADDINF

Purpose: Adds integer I to existing STRING, using format FORM. Routine does not remove
leading and trailing spaces. Also updates the significant length. For example:
CALL ADDINF (STRING,SIGLEN,25,’I4.4’)
Adds the value 25 with the I4.4 format to STRING, the significant length of STRING
is increased by 4. If the input string is ‘example’, then after the call, the string is
‘example0025’.

Usage: call ADDINF (STRING, SIGLEN, I, FORM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDINT, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING (is updated after concatenation) I4 I/O
I Integer to be added I4 I
FORM Format to be used (without brackets) C*(*) I

Routine: ADDINT

Purpose: Adds integer I to existing STRING, without leading and trailing spaces. Also updates
the significant length. For example:
CALL ADDINT (STRING,SIGLEN,25)
Adds the value 25 to STRING, the significant length of STRING is increased by 2. If
the input string is ‘example’, then after the call, the string is ‘example25’.

Usage: call ADDINT (STRING, SIGLEN, I)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDINF, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING I4 I/O
I Integer to be added I4 I

68

Routine: ADDREA

Purpose: Adds real R to existing STRING, using format FORM. Routine removes leading and
trailing spaces. Also updates the significant length. For example:
CALL ADDREA (STRING,SIGLEN,25.’f3.0’)
Adds the value 25. to STRING using the format f3.0, the significant length of
STRING is increased by 3. If the input string is ‘example’, then after the call, the string
is ‘example25.’.

Usage: call ADDREA (STRING, SIGLEN, R, FORM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDREF, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING I4 I/O
R Real to be added R4 I
FORM Format to be used (without brackets) C*(*) I

Routine: ADDREF

Purpose: Adds real R to existing STRING, using format FORM. Routine does not remove lead-
ing and trailing spaces. Also updates the significant length. For example (a ‘-‘ signifies a
space):
CALL ADDREF (STRING,SIGLEN,25.’f8.0’)
Adds the value 25. to STRING using the format f3.0, the significant length of
STRING is increased by 8. If the input string is ‘example’, then after the call, the string
is:
‘example-----25.’.

Usage: call ADDREF (STRING, SIGLEN, R, FORM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDREA, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING I4 I/O
R Real to be added R4 I
FORM Format to be used (without brackets) C*(*) I

69

Routine: ADDSTF

Purpose: Adds string TMP to existing STRING, WITH leading and trailing spaces. Also updates
the significant length. For example (a ‘-‘ signifies a space):
CALL ADDSTF (STRING,SIGLEN,’---example---‘)
Adds the string ‘---example---‘ to STRING, the significant length of STRING is in-
creased by 13. If the input string is ‘example’, then after the call, the string is:
‘example---example---’.

Usage: call ADDSTF (STRING, SIGLEN, TMP)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDSTR, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING I4 I/O
TMP String to be added C*(*) I

Routine: ADDSTR

Purpose: Adds string TMP to existing STRING, without leading and trailing spaces. Also updates
the significant length. For example (a ‘-‘ signifies a space):
CALL ADDSTR (STRING,SIGLEN,’---example---‘)
Adds the string ‘example‘ to STRING, the significant length of STRING is increased
by 7. If the input string is ‘example’, then after the call, the string is:
‘exampleexample’.

Usage: call ADDSTR (STRING, SIGLEN, TMP)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADDSTF, STR_COPY

Arguments: Meaning Data type I and/or O

STRING String to which concatenation should take place C*(*) I/O
SIGLEN Significant length of STRING I4 I/O
TMP String to be added C*(*) I

70

Routine: ILEN

Purpose: Determines the significant length of a string. A zero is returned if the string is empty.

As this version of TTUTIL is the last fully FORTRAN-77 compatible library, you are
advised to change calls to ILEN into calls to the Fortran 90 intrinsic function
LEN_TRIM as soon as you have migrated to the Fortran 90 environment.

Usage: <integer variable> = ILEN (STRING)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ISTART

Arguments: Meaning Data type I and/or O

STRING Input string C*(*) I
ILEN Returned significant length I4 O

Routine: ISTART

Purpose: Determines the first significant character of a string. If the string contains no signifi-
cant characters, a zero is returned. The functionality of this routine is similar to ILEN,
except that now the first non-space character is returned instead of the last.

Usage: <integer variable> = ISTART (STRING)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ILEN

Arguments: Meaning Data type I and/or O

STRING Input string C*(*) I
ISTART Returned position of first non-space character I4 I

Routine: LOWERC

Purpose: Converts a string to lowercase characters
Usage: call LOWERC (STRING)
Author(s): Daniël van Kraalingen , Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: UPPERC

Arguments: Meaning Data type I and/or O

STRING Character string C*(*) I/O

71

Routine: UPPERC

Purpose: Converts a string to uppercase characters
Usage: call UPPERC (STRING)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: LOWERC

Arguments: Meaning Data type I and/or O

STRING character string C*(*) I/O

Routine: REMOVE

Purpose: Replaces all unwanted characters in a string with a <space>. For example, if ‘e’ is
removed from ‘bicentennial’, the result is ‘bic nt nnial’.

Usage: call REMOVE (STRING, CHR)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

STRING String that is used C*(*) I/O
CHR Character to be removed C*1 I

Routine: STR_COPY

Purpose: Copies an input string to an output string. The added value is that the routine checks
that the significant part of the input string fits on the output string.

Usage: call STR_COPY (SOURCE_S, TARGET_S, OK)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: ADD* routines

Arguments: Meaning Data type I and/or O

SOURCE_S Input string C*(*) I
TARGET_S Output string C*(*) O
OK Flag whether input string fits on output string L4 O

72

Routine: WORDS

Purpose: Looks for start and end positions of words on a string. Valid separators can be sup-
plied by the user. A sequence of separators is treated as one separator. For example if
the string is:
‘a,b, c’ and commas and spaces are used as separator, WORDS will find the first
word at position 1 to 1, the second word at position 3 to 3 and the third word at
position 9.

Usage: call WORDS (RECORD, ILW, SEPARS, IWBEG, IWEND, IFND)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DECREC

Arguments: Meaning Data type I and/or O

RECORD Character string where words are to be located C*(*) I
ILW Maximum number of words which can be found (=declared

length of IWBEG and IWEND arrays)
I4 I

SEPARS String containing separator characters C*(*) I
IWBEG Integer array of dimension ILW containing start positions on

return
I4 O

IWEND Integer array of dimension ILW containing end positions on
return

I4 O

IFND Integer containing the number of words found I4 O

Routine: RCHRSRC

Purpose: Takes a character backward from a string and checks whether it matches with one of
the characters supplied by the user. If a match is not found, the next character from
the input string is compared. For example if the string is ‘myexample’, and the charac-
ters to find are ‘ma’, then a match is found at the m on position 6.

Usage: <integer variable> = RCHRSRC (CHARS, STRING, POSBEG,POSEND)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: IFINDC, SFINDG

Arguments: Meaning Data type I and/or O

CHARS String of characters with which match may occur (the string
‘ma’ in the above example)

C*(*) I

STRING String where match is looked for in backward position (the
string ‘myexample’ in the above example)

C*(*) I

POSBEG Position where search should stop (inclusive) I4 I
POSEND Position where search should start (inclusive) I4 I
RCHRSRC Returned position of match I4 O

73

9.7 Decoding of character strings to values

Routine: DECCHK

Purpose: Checks if a string is a number (a number here is defined as either a real or integer
value)

Usage: <logical variable> = DECCHK (STRING)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 2-September-1999
See also: DECINT, DECREA

Arguments: Meaning Data type I and/or O

STRING Input string, NO trailing or leading blanks ! C*(*) I
DECCHK Returned value is .true. if the string is a real or integer number,

otherwise a .false. is returned
L4 O

Routine: DECINT

Purpose: Decodes an integer number from a character string into an integer variable
Usage: call DECINT (IWAR, STRING, IVALUE)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DECCHK, DECREA

Arguments: Meaning Data type I and/or O

IWAR In case of error IWAR = 1, otherwise IWAR = 0, can be used
to check the success of the decoding

I4 O

STRING Input string, NO trailing or leading blanks are allowed C*(*) I
IVALUE Integer value read from string, if decoding failed (when IWAR

is returned as 1), a zero for IVALUE is returned
I4 O

74

Routine: DECREA

Purpose: Decodes a real number from a character string into a real variable
Usage: call DECREA (IWAR, STRING, VALUE)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DECCHK, DECINT

Arguments: Meaning Data type I and/or O

IWAR In case of error IWAR = 1, otherwise IWAR = 0, can be used
to check the success of the decoding

I4 O

STRING Input string, NO trailing or leading blanks are allowed C*(*) I
VALUE Real value read from string, if decoding failed (when IWAR is

returned as 1), a zero for VALUE is returned.
R4 O

Routine: DECREC

Purpose: Locates and decodes from the character string RECORD at most ILX real numbers.
Numbers are separated by blanks(s) and/or comma(s).

Usage: call DECREC (RECORD, ILX, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WORDS, DECREA, DECINT, DECCHK

Arguments: Meaning Data type I and/or O

RECORD Character string C*(*) I
ILX Number of REAL numbers to be decoded I4 I
X Array of dimension ILX containing the decoded results R4 O

9.8 Error handling

Routine: FATALERR

Purpose: Writes an error message to the screen and holds the screen until the <ENTER> key is
pressed. Then execution is terminated.

Usage: Call FATALERR (ROUTINE, MESSAG)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: WARNING

Arguments: Meaning Data type I and/or O

ROUTINE String containing the routine name C*(*) I
MESSAG String containing the message C*(*) O

75

Routine: WARNING

Purpose: Writes a warning message to the screen, but does not terminate the execution
Usage: call WARNING (ROUTINE, MESSAG)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FATALERR

Arguments: Meaning Data type I and/or O

ROUTINE String containing the routine name C*(*) I
MESSAG String containing the message C*(*) I

9.9 Version routines

Routine: TTUVER

Purpose: Verifies that the minimal TTUTIL version required by the calling program matches the
linked version of the TTUTIL library. Also returns the current TTUTIL version.

Usage: call TTUVER (MIN_V, CUR_V)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: VER4_12

Arguments: Meaning Data type I and/or O

MIN_V Minimum version of TTUTIL required for the calling program R4 I
CUR_V Current version of TTUTIL R4 O

Routine: VER4_12

Purpose: This routine is a dummy routine meant to be able to see in a TTUTIL library file what
the version of that library is.

Usage:
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: TTUVER

Arguments: Meaning Data type I and/or O

none

76

9.10 Numeric functions

Routine: FCNSW

Purpose: Input switch depending on sign of X1 ; function is equivalent to the CSMP-FCNSW.
(See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = FCNSW (X1, X2, X3, X4)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: INSW

Arguments: Meaning Data type I and/or O

X1 Variable upon which the test is done R4 I
X2 Value of FCNSW in case X1 < 0 R4 I
X3 Value of FCNSW in case X1 = 0 R4 I
X4 Value of FCNSW in case X1 > 0 R4 I
FCNSW Returned value R4 O

Routine: INSW

Purpose: Input switch depending on sign of X1 ; function is equivalent to the CSMP-INSW.
(See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = INSW (X1, X2, X3)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: FCNSW

Arguments: Meaning Data type I and/or O

X1 Identifier upon which the test is done R4 I
X2 Value of INSW in case X1 < 0 R4 I
X3 Value of INSW in case X1 >= 0 R4 I
INSW Returned value R4 O

77

Routine: INTGRL

Purpose: Function value = STATE + RATE * DELT. (See also Rappoldt and van Kraalingen,
1996).

Usage: <real variable> = INTGRL (STATE, RATE, DELT)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

STATE Old state R4 I
RATE Rate of change per unit time R4 I
DELT Time step R4 I
INTGRL Function name, new state R4 O

Routine: LIMIT

Purpose: Returns value of X limited within the interval [MIN,MAX]. (See also Rappoldt and van
Kraalingen, 1996).

Usage: <real variable> = LIMIT (MIN, MAX, X)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: INSW, FCNSW

Arguments: Meaning Data type I and/or O

MIN Interval lower boundary R4 I
MAX Interval upper boundary R4 I
X Variable that should be limited R4 I
LIMIT Limited value R4 O

78

Routine: LINT

Purpose: This function is a linear interpolation function. The function also extrapolates outside
the defined region in case X is below or above the region defined by TABLE.
Extrapolation, however, results in a warning to the screen. The preferred routine for
linear interpolation, however, is LINT2 which gives better error and warning texts.
(See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = LINT (TABLE, ILTAB, X)
Author(s): Daniël van Kraalingen , Kees Rappoldt,
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: LINT2

Arguments: Meaning Data type I and/or O

TABLE A one-dimensional array of dimension ILTAB with paired
data: x1,y1,x2,y2, etc.

R4 I

ILTAB Number of elements in the array TABLE I4 I
X The value at which interpolation should take place R4 I
LINT Function name, result of the interpolation R4 O

Routine: LINT2

Purpose: This function is a linear interpolation function. The function also extrapolates outside
the defined region in case X is below or above the region defined by TABLE.
Extrapolation, however, results in a warning to the screen. LINT2 is the preferred
routine for linear interpolation. (See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = LINT2 (TABNAM, TABLE, ILTAB, X)
Author(s): Daniël van Kraalingen , Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: LINT

Arguments: Meaning Data type I and/or O

TABNAM Table name C*(*) I
TABLE A one-dimensional array of dimension ILTAB with paired

data: x1,y1,x2,y2, etc.
R4 I

ILTAB Number of elements in the array TABLE I4 I
X The value at which interpolation should take place R4 I
LINT2 Function name, result of the interpolation R4 O

79

Routine: MOVAVR

Purpose: Calculates a moving average of the last IP points, MOVAVR can keep simultaneous
moving averages of 10 different variables, distinguished by their names. For each
variable, a maximum moving average number of 100 points can be handled.

Usage: call MOVAVR (ITASK, NAME, IP, IN, OUT)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

ITASK Task to be carried out:
=1, initialize
=2, calculate moving average

I4 I

NAME Variable name for which moving average should be calculated C*(*) I
IP Number of previous values (including the current value) on

which moving average should be calculated
I4 I

IN New value R4 I
OUT Moving average for NAME (if MOVAVR has not yet stored

IP values for NAME, then the moving average is calculated
from the fewer number of points)

R4 O

Routine: NOTNUL

Purpose: This function can be used to avoid divide by zero errors in divisions. The function
result is defined as: NOTNUL = X, when X <> 0 NOTNUL = 1, when X = 0. (See
also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = NOTNUL (X)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: LIMIT, INSW, FCNSW

Arguments: Meaning Data type I and/or O

X Input argument R4 I
NOTNUL Function result R4 O

80

Routine: REAAND

Purpose: This function emulates the CSMP function AND. It is similar to a logical .AND.
except that arguments and results are REAL instead of LOGICAL The definition of
the function is: REAAND = 1, X1 > 0 and X2 > 0 REAAND = 0, else. (See also
Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = REAAND (X1, X2)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: REANOR

Arguments: Meaning Data type I and/or O

X1 first argument R4 I
X2 second argument R4 I
REAAND Function result R4 O

Routine: REANOR

Purpose: This function emulates the CSMP function NOR. It is similar to the logical expression
.NOT.(logical.OR.logical) except that arguments and results are REAL instead of
LOGICAL The definition of the function is: REANOR = 1 when X1 <=0 and X2 <=
0 REANOR = 0 otherwise. (See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = REANOR (X1, X2)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: REAAND

Arguments: Meaning Data type I and/or O

X1, first argument R4 I
X2 second argument R4 I
REANOR Function result R4 O

81

9.11 Date/time

Routine: DTARDP

Purpose: Converts DATEA, FSEC representation of a Date/Time to the double precision
representation. This routine is the opposite from DTDPAR.

Usage: Call DTARDP (DATEA, FSEC, DPDTTM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DTDPAR, DTFSEDP

Arguments: Meaning Data type I and/or O

DATEA Integer array of six elements containing year, month, day,
hour, minute and seconds

I4 I

FSEC Fractional seconds R4 I
DPDTTM Converted date/time to a double precision date/time

(represented as the number of days since 1/1/1900)
R8 O

Routine: DTDPAR

Purpose: Converts the double precision representation of a Date/Time to DATEA, FSEC
representation. This routine is the opposite from DTARDP.

Usage: call DTDPAR (DPDTTM, DATEA, FSEC)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DTARDP, DTFSEDP

Arguments: Meaning Data type I and/or O

DPDTTM Date/time as a double precision date/time (represented as the
number of days since 1/1/1900)

R8 I

DATEA Integer array of six elements containing year, month, day,
hour, minute and seconds

I4 O

FSEC Fractional seconds R4 O

82

Routine: DTDPST

Purpose: Write the double precision representation of date/time to a string using a format
specification

Usage: call DTDPST (FORM, DPDTTM, STRNG)
Author(s): Daniël van Kraalingen
Version: 1.1, TTUTIL version 4.12
Date: 6-April-1998
See also:

Arguments: Meaning Data type I and/or O

FORM Format to use. A string containing one or more of the
following specifiers with separator characters:
YEAR writes the year as a four digit year
MONTH writes the month as a two digit number
MONTHLT writes the month with the full name
MONTHST writes the month with a three character name
DAY writes a two digit day number
HOUR writes a two digit hour
MINUTE writes a two digit minute
SECONDS writes a two digit seconds
FSECONDS writes the fractional seconds as a six digit

number, must appear behind a seconds
specifier

For example, if the format
‘YEAR-MONTHST-DAY
HOUR:MINUTE:SECONDS.FSECONDS’
is used on noon Sept 27, 1998, STRNG will be:
‘1998-Sep-27 12:00:00.000000’

C*(*) I

DPDTTM Date/time as a double precision date/time (represented as the
number of days since 1/1/1900)

R8 I

STRNG Output string with formatted date/time C*(*) O

Routine: DTFSECMP

Purpose: Compares two dates in FSE format (FSE format is an integer for year and another
integer for the day of year)

Usage: <integer variable> = DTFSECMP (IYEAR1, IDOY1, IYEAR2, IDOY2)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

IYEAR1 Year of first date I4 I
IDOY1 Day of year of first date I4 I
IYEAR2 Year of second date I4 I
IDOY2 Day of year of second date I4 I
DTFSECMP =-1, first date is earlier than second date

=0, first date is equal to second date
I4 O

83

=1, first date is later than second date

Routine: DTFSEDP

Purpose: Converts date/time in FSE format to the double precision representation
Usage: call DTFSEDP (IYEAR, IDOY, DOY, DPDTTM)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DTDPAR, DTARDP

Arguments: Meaning Data type I and/or O

IYEAR Year to convert I4 I
IDOY Integer day number to convert I4 I
DOY Real day number to convert R4 I
DPDTTM Converted date/time as double precision variable R8 O

Routine: DTLEAP

Purpose: Determines whether YEAR is a leap year or not, taking into account the official leap
year logic

Usage: <logical variable> = DTLEAP (YEAR)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

YEAR Year to use I4 I
DTLEAP Flag whether YEAR is a leap year L4 O

Routine: DTNOW

Purpose: Returns the systems date and time as an integer array of six elements containing year,
month, day, hour, minute and seconds

Usage: call DTNOW (DATEA)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: DTARDP

Arguments: Meaning Data type I and/or O

DATEA Array of length 6 containing year, month, day, hour, minute
and seconds

I4 O

84

9.12 ‘Raw’ file I/O

Routine: GETREC

Purpose: Reads a record from an open file skipping comment lines. Comment lines have an
asterisk (*) in their first or second (!!) column (with a space in the first).

Usage: call GETREC (IUNIT, RECORD, EOF)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RECREAD

Arguments: Meaning Data type I and/or O

IUNIT Unit of opened file used for reading I4 I
RECORD Returned record C*(*) O
EOF Flag whether the end of the file is encountered L4 O

Routine: RECREAD

Purpose: Returns a record from an input file opened with RECREAD_INIT. The advantage of
this routine over the normal method of reading with a Fortran READ statement is that
RECREAD is much faster when you are working with the Microsoft 5.1 or 1.0 com-
piler or the Digital Visual Fortran 5.0 compiler (due to a special mode used in the
OPEN statement). Also with these compilers, RECREAD is able to determine
whether the supplied string was long enough to hold every character of the input
record. If not the IWAR variable is set to 1. With other compilers, RECREAD can
also be used but without these advantages.

Usage: call RECREAD (STBUF, RECLEN, STBLEN, EOF, IWAR)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: GETREC

Arguments: Meaning Data type I and/or O

STBUF String supplied by the user to which the input record is copied C*(*) O
RECLEN Declared length of STBUF I4 I
STBLEN Significant length of string STBUF I4 O
EOF End_of_file flag, on EOF, this routines closes the file L4 I
IWAR Set to 1 if input record overflows STBUF, otherwise IWAR is

zero
I4 O

85

Routine: RECREAD_INIT

Purpose: Initializes sequential input from a file for subsequent reading with RECREAD. Note
that input sections starting with RECREAD_INIT cannot be nested (see Section 8.1).

Usage: call RECREAD_INIT (UNIT, INPUT_FILE)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

UNIT Unit to use for subsequent reading with RECREAD I4 I
INPUT_FILE File to be used by RECREAD C*(*) I

Routine: RECREAD_TERM

Purpose: Closes the open file in case it is not closed by the RECREAD routine
Usage: call RECREAD_TERM
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

none

9.13 List search and sorting

Routine: IFINDC

Purpose: Finds position of a string in an array with strings ; when the string does not occur in
the list a zero value is returned. Declared length of string array and string to search
should be the same. Searching can take place from the beginning to end or the reverse.

Usage: <integer variable> = IFINDC (NAMLIS, ILDEC, IST, IEND, NAME)
Author(s): Kees Rappoldt, Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: SFINDG, IFINDI

Arguments: Meaning Data type I and/or O

NAMLIS Character string array of dimension ILDEC, the ‘list’ C*(*) I
ILDEC Declared length of array NAMLIS I4 I
IST Array element where search should start I4 I
IEND Array element where search should end I4 I
NAME Name to be found in the list C*(*) I
IFINDC Pointer to matching array element I4 O

86

Routine: IFINDI

Purpose: Similar to IFINDC but now searching for an integer. When the integer is not in the
list, a zero value is returned.

Usage: <integer variable> = IFINDI (ILIS, ILDEC, IST, IEND, IINP)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: IFINDC, SFINDG

Arguments: Meaning Data type I and/or O

ILIS Integer array of dimension ILDEC, the ‘list’ I4 I
ILDEC Declared length of array ILIS I4 I
IST Array element where search should start I4 I
IEND Actual size of the list I4 I
IINP Integer to be found in the list I4 I
IFINDI Pointer to matching array element I4 O

Routine: SFINDG

Purpose: This is a more powerful version of IFINDC. It finds the position of a text in an array
of texts. Whereas IFINDC looks for an exact match including leading and trailing
spaces, SFINDG has several ways to find a match, nl. an exact match, a match at the
beginning, a match at the end, and a match anywhere in the string. Also SFINDG
never takes into account trailing spaces.

Usage: call SFINDG (NAMLIS, ILDEC, IST, IEND, NAME, ISTYPE, IFINDG, IMATCH)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: IFINDC, IFINDI

Arguments: Meaning Data type I and/or O

NAMLIS Character string array, the ‘list’ C*(*) I
ILDEC Declared length of NAMLIS I4 I
IST Array element where search should start I4 I
IEND Array element where search should end I4 I
NAME Character string to be found in NAMLIS C*(*) I
ISTYPE Type of search to be carried out

=1, NAME should match NAMLIS exactly
=2, NAME should match beginning of NAMLIS
=3, NAME should match end of NAMLIS
=4, NAME can match at any character position

I4 I

IFINDG Element number where match was found I4 O
IMATCH Character position of NAMLIS(IFINDG) where match was

found
I4 O

87

Routine: SORTCH

Purpose: Returns alphabetical order of an array of character strings. The order is returned as an
integer index array (the character string array is left unchanged). Adapted from routine
INDEXX of Numerical Recipes. The routine is left unchanged as much as possible.

Usage: call SORTCH (N, ARRIN, INDX, Q)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: SORTIN

Arguments: Meaning Data type I and/or O

N Array size of ARRIN and INDX I4 I
ARRIN Character string array of dimension N C*(*) I
INDX Integer array of dimension N containing the sorted order I4 O
Q A character variable with the same length as the elements of

ARRIN. This is used internally to SORTCH as a help variable,
but should be declared in the calling program.

C*(*) I

Routine: SORTIN

Purpose: Returns alphabetical order of an array of integers. The order is returned as an integer
index array (the integer array is left unchanged). Adapted from routine INDEXX of
Numerical Recipes. Routine is left unchanged as much as possible.

Usage: call SORTIN (N, ARRIN, INDX)
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: SORTCH

Arguments: Meaning Data type I and/or O

N Array size of ARRIN and INDX I4 I
ARRIN Character string array of dimension N C*(*) I
INDX Integer array of dimension N containing order I4 O

88

9.14 Random number generation

Routine: IUNIFL

Purpose: Generates integer uniformly distributed numbers between a lower and an upper bound
(inclusive). See description of UNIFL for a more detailed discussion.

Usage: <integer variable> = IUNIFL (LOWB, UPPB)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: UNIFL

Arguments: Meaning Data type I and/or O

LOWB Lower bound (inclusive) I4 I
UPPB Upper bound (inclusive) I4 I
IUNIFL Random integer I4

Routine: UNIFL

Purpose: High quality pseudo random number generator. This pseudo random generator is fully
based on FUNCTION UNIFL in the second edition (1987) of Bratley et al. (see be-
low). A logical INIT has been added to the original program in order to include seeds
in the program (implicit initialization). This generator is of the so called combined type.
It does not behave pathologically with the Box-Muller method for the generation of
normal variates, as do the commonly used linear congruential generators (see also
comments in FUNCTION BOXMUL). The algorithm is:
X(i+1) = 40014 * X(i) mod (2147483563)
Y(i+1) = 40692 * Y(i) mod (2147483399)
Z(i+1) = (X(i+1)+Y(i+1)) mod (2147483563)
The random number returned is constructed dividing Z by its range. The period of the
generator is about 2.30584E+18. The algorithm originates from L'Ecuyer (1986). In
Bratley et al. (page 332) more information can be found on seeds and periods of X and
Y. References:
Bratley, P., B.L. Fox, L.E. Schrage. 1983. A guide to simulation Springer-Verlag New
York Inc. 397 pp.
L'Ecuyer,P. (1986). Efficient and portable combined pseudo-random number genera-
tors. Commun. ACM.

Usage: <real variable> = UNIFL()
Author(s): Kees Rappoldt
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: IUNIFL

Arguments: Meaning Data type I and/or O

UNIFL Pseudo-random uniformly distributed variate R4 O

89

9.15 Miscellaneous

Routine: AMBUSY

Purpose: Stores and returns message numbers belonging to routine names. Internal use is made
in the TTUTIL routines to find out whether or not other routines have been called.
Also the selected set number from the RDFROM routine is made available to
OUTDAT.

Usage: call AMBUSY (ITASK, ROUTINE, ICODE)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also: RDFROM, OUTDAT

Arguments: Meaning Data type I and/or O

ITASK Function control
=1, store routine name and code
=2, get code belonging to routine name

I4 I

ROUTINE String containing the routine name C*(*) I
ICODE Code I4 I/O

Routine: CHKTSK

Purpose: The function of this routine is to check the new task and previous task of simulating
subroutines. This routine is normally called from an FSE type of model. (See Van
Kraalingen, 1995).

Usage: call CHKTSK (ROUTINE, IULOG, ITOLD, ITASK)
Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

ROUTINE Name of routine from which CHKTSK is called C*(*) I
IULOG Unit for log file where to write errors to I4 I
ITOLD Value of previous task I4 I
ITASK Value of new task I4 I

90

Routine: TIMER2

Purpose: This subroutine updates TIME and related variables each time it is called with
ITASK=2. It will set TERMNL to .TRUE. if FINTIM is reached. OUTPUT is flagged
when TIME is a multiple of PRDEL. When PRDEL=0, no output is flagged ! When
IYEAR < 1500, IYEAR will not be increased because in that case climate data are
used. The routine should be initialized first by a call with ITASK=1. The first six ar-
guments will then be made local. Leap years are handled correctly. This routine is nor-
mally called from the FSE driver, and not directly by the user. (See Van Kraalingen,
1995).

Usage: call TIMER2 (ITASK, STTIME, DELT, PRDEL , FINTIM, IYEAR,
TIME, DOY, IDOY, TERMNL, OUTPUT)

Author(s): Daniël van Kraalingen
Version: 1.0, TTUTIL version 4.12
Date: 30-September-1997
See also:

Arguments: Meaning Data type I and/or O

ITASK Task that the routine should carry out:
=1, Initialize, store variable for processing with ITASK=2
=2, Increase TIME by DELT, update other time variables

I4 I

STTIME Start day of simulation (1 <= STTIME <= 365, 366 in leap
years, leap years are not flagged when IYEAR < 1500)

R4 I

DELT Time step of simulation (multiple of 1 or 1/DELT = integer
e.g. 0.25, 1/3, 0.5, 1, 2, 3)

R4 I

PRDEL Time between successive outputs (must be zero, equal to
DELT or multiple of DELT)

R4 I

FINTIM Finish time of simulation (counted from start of simulation !) R4 I
IYEAR Start year with ITASK=1 and current year with ITASK=2, not

updated when IYEAR < 1500
I4 I/O

TIME Time from start of simulation (starts at value of STTIME) R4 O
DOY Day number within YEAR (REAL version) R4 O
IDOY Day number within YEAR (INTEGER version) I4 O
TERMNL Flag that indicates if FINTIM has been reached L4 O
OUTPUT Flag that indicates if past TIME is a multiple of PRDEL L4 O

9.16 Internal routines
Not listed, see Section 10.3 for a list of names.

91

10. Reserved symbol names

10.1 General
It is advisable, to never give your own subroutines, functions, COMMON blocks, BLOCK DATA
sections or main programs a name that also occurs within the TTUTIL library, unless you really under-
stand the scope and workings of these names. Relevant names in TTUTIL in this respect are the rou-
tine names, the internal routine names, COMMON block name and names of BLOCK DATA sec-
tions. All names except the routine names (which can be found in Section 9) are listed in this section.

10.2 Reserved common block names
COMMON block names in TTUTIL (alphabetically):

BUF_READ_COM1

BUF_READ_COM2

RDFIL1

RDFIL2

RDREC1

RDREC2

RDSTA

RDTBL1

RDTBL2

RDTOK1

RDTOK2

TTUDD1

TTUDD2

TTURR1

TTURR2

WR_SYS_1

WR_SYS_2

10.3 Names of internal TTUTIL routines
DTSYS

ENTHLP

PARSWORD

RDDATA

RDERR

RDERRI

RDINDX

RDLEX

RDSCTB

RDTMP1

RDTMP2

SWPI4

10.4 Names of BLOCK DATA sections
RECREAD_DATA
WRINIT_DATA

92

93

11. Capacity settings of TTUTIL read routines

The following limits exist in the TTUTIL read routines:

Quantity Maximum

General
Significant record length on TTUTIL format data file+1 (for end of line
processing)

1024

Maximum length of variable names (in characters) 31
Maximum number of columns in a table 40

Data files
Maximum number of variable names in a data file 400
Maximum number of values per variable name no limit

Rerun files
Maximum number of variable names in each set of a rerun file 40
Maximum number of values per variable name no limit
Maximum number of sets in a rerun file no limit

94

95

12. Removed routines

Because of little use of routines, or because of outdated functionality, we have decided to remove sev-
eral routines from the current version of the TTUTIL library, relative to the one described in Rappold
& van Kraalingen (1990). However, the source files are still available for these routines.

The removed routines are (alphabetically):

Routine name Brief description of functionality Why removed

AFINVS Determines the inverse of a one-dimen-
sional array with (x,y) values, a so called
AFGEN/LINT table.

Very limited use.

BOXMUL Randomly distributed numbers following
Standard Normal probability distribution.

Dedicated, public domain libraries
available.

CLS Clears the screen of MS-DOS based
systems (when ANSI.SYS is loaded).

Very limited use of MS-DOS, and very
limited used of screen functions in MS-
DOS

COPFIL Copies a text file and appends it to
another file.

Replaced by COPFIL2 with more
functionality.

ERROR Displays an error message on the screen
and stops execution of the program.

Name conflicted with C-library, routine
has been renamed to FATALERR.

EUDRIV Euler integrator. Moved to DRIVERS library.
FOPEN Opens formatted sequential access files. Name conflicted with C-library, routine

has been renamed to FOPENS.
GAMMA Randomly distributed numbers following

Gamma distribution.
Dedicated, public domain libraries
available.

GETCH Reads a text file character by character. Very limited use.
MOFILP Moves the file pointer across blocks of

text that start with ‘*’.
Routine is redundant with new RD
routines for reading data from text files.

OUTARR Outputs an array to OUTDAT system. Replace by OUTAR2 with more
functionality.

PLTFUN Creates a TTPLOT text file from a one-
dimensional array with (x,y) values, a so
called AFGEN/LINT table.

Very limited use.

PLTHIS Creates a TTPLOT text file with a
histogram of the entered data.

Very limited use.

POS Positions the cursor of MS-DOS based
systems at a particular (x,y) location of the
screen. (Only when ANSI.SYS is loaded).

Very limited use of MS-DOS, and very
limited used of screen functions in MS-
DOS

RK4A Part of Runge-Kutta integrator. Moved to DRIVERS library.
RKDRIV Part of Runge-Kutta integrator. Moved to DRIVERS library.
RKQCA Part of Runge-Kutta integrator. Moved to DRIVERS library.
STRIP Strips unwanted characters (CHR) from a

character string.
Violates the FORTRAN-77 rule that
string variables cannot appear on both
sides of an assignment. Possibly, this
function is reintroduced into the first
version of the TTUTIL library for
Fortran-90 compilers.

TIMER Clock for simulation models Required change in time calculation, has
been reprogrammed as TIMER2.

96

97

References

Kraalingen, D.W.G. van, 1995.
The FSE system for crop simulation, version 2.1. Quantitative Approaches in Systems Analysis
No. 1. DLO Research Institute for Agrobiology and Soil fertility; The C.T.de Wit graduate school
for Production Ecology. Wageningen. The Netherlands. 58 pp. (available on request).

Rappoldt, C. & D.W.G. van Kraalingen, 1990.
FORTRAN utility library TTUTIL. Simulation Report CABO-TT no. 20. Centre for Agrobiologi-
cal Research and Dept. of Theoretical Production Ecology, Wageningen, The Netherlands, 54 pp.
(available on request).

Rappoldt, C., and D.W.G. van Kraalingen, 1996.
The Fortran Simulation Translator, FST version 2.0. Quantitative Approaches in Systems Analysis
No. 5. DLO Research Institute for Agrobiology and Soil fertility; The C.T.de Wit graduate school
for Production Ecology. Wageningen. The Netherlands. 178 pp. (available on request).

98

Bookmarks:
library_name: TTUTIL
library_version: 4.12

2-1

