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Abstract

A crop map of the Netherlands was created using a methodology that integrates multi-temporal and

multi-sensor satellite imagery, statistical data on crop area and parcel boundaries from a 1:10,000

digital topographic map. In the first phase a crop field database was created by extracting static

parcel boundaries from the digital topographic map and by adding dynamic crop boundaries using

on-screen digitising. In the next phase the crop type was determined from the spectral and

phenological properties of each field. The resulting crop map has an accuracy larger than 80% for

most individual crops and an overall accuracy of 90%. By comparing cost and man-hours it was

demonstrated that per-field classification is more efficient than per-pixel classification and

decreased the effort for classification from 1500 to 500 man-hours, but the effort for creating the

crop field database was estimated at 2300 man-hours. However, the total cost could be lowered by

outsourcing the digitising of the crop boundaries. The use of image segmentation techniques for

deriving the crop field database was discussed. It was concluded that image segmentation cannot

replace the use of a large-scale topographic map, but in future segmentation may be used to map

the dynamic crop boundaries within the topographic parcels.



1. Introduction

In the Netherlands timely and accurate information on land cover/use at regional and national

scales is required by national and regional governmental agencies to support environmental policy

and physical planning purposes. Until the end of the eighties information on land cover/use was

usually obtained from land use statistics and topographical maps. However, land use statistics were

only available at the level of administrative units (e.g. municipalities or provinces) and could not be

obtained for areas with deviating boundaries (e.g. river basins and groundwater protection areas).

Moreover, topographical maps often excluded some land cover/use classes, they were often

outdated and they were not available in digital form until recently. Therefore, in 1987 it was

decided to produce a land cover database of the Netherlands in a raster format (further to be

mentioned ‘LGN database’), using satellite images (Thunnissen et al. 1992a and 1992b). Four

versions of the database are available (LGN1, 2, 3 and 4), based on satellite images from 1986,

1992/'94, 1995/'97 and 1999/2000. Today, the LGN database discriminates 39 land use classes

including crop types, forest types, water, various urban classes and semi-natural vegetation types.

An important aspect of all LGN versions is that the database provides an overview of the crops that

were grown in that period in the Netherlands. The mapping of the crop types is clearly the most

time-consuming and expensive task of the updating of the LGN database and much effort has been

spent on deriving efficient methodologies for classifying crops from satellite images. A distinct

evolution in the crop mapping methodology can be recognised from LGN1 to LGN3. The crop

classification methodology used for LGN1 was based on a combination of supervised per-pixel

classification using a single Landsat TM image and manual delineation of urban areas (Thunnissen

et al. 1992a). Because this approach yielded poor classification results (60% overall accuracy), it

was replaced by a multi-temporal approach during the production of the LGN2 (75% overall

accuracy). An even higher accuracy was needed for the LGN3 database and this requirement was

met using a stratified multi-temporal approach that was heavily based on visual interpretation for



the crop classification. Although this approach yielded an 85% overall accuracy, it was clear that

the use of visual interpretation was time-consuming and expensive.

In 2000 the production of LGN4 was initiated and a new methodology for crop classification was

required in order to reduce labour cost while maintaining high classification accuracy. A distinct

advantage over the preceding versions of the LGN database was that since 1998 the 1:10,000

digital topographic vector database of the Netherlands is available. This vector database nowadays

is being used as the common geometric base for most geographical databases in the Netherlands.

LGN4 should therefore comply with this database as much as possible. Besides the necessity of

standardising the LGN4 database to a common geometric base, the use of the 1:10,000 digital

topographic vector database also provides new methodological opportunities because it can be used

as a starting point for mapping all crop fields. The prospect of having these crop fields in a digital

vector database makes the application of per-field classification techniques feasible.

This paper focuses on the crop classification methodology that was developed in order to update

the crop classification in the LGN database. The LGN database contains many other classes but the

classification methodologies for these classes are largely based on visual interpretation in

combination with interpretation of ancillary data and are therefore considered out of scope. Readers

that are interested in the methodologies used for the non-agricultural classes are advised to look at

Thunnissen and De Wit (2000) and Thunnissen and Noordman (1996).

The objective of this research was to develop an efficient per-field crop classification approach that

makes optimal use of multi-temporal satellite data, the 1:10,000 digital topographic vector database

and statistical data on crop acreage in the Netherlands. The final product was defined as a crop map

for the entire Netherlands using the 1:10,000 digital topographic vector database as its geometric

base (further to be mentioned 'LGN4 crop map'). The accuracy requirement for the LGN4 crop map

was similar to that for LGN3 (85% overall accuracy, 75% accuracy for individual classes).



2. Data, pre-processing and nomenclature

2.1. Satellite imagery and optimal acquisition periods

In general, the use of multi-temporal satellite acquisitions is required for an accurate classification

of most agricultural crops (Jewell 1989, Murakami et al. 2001). The optimal acquisition periods of

optical satellite imagery are determined by the phenological characteristics of the main crops

(figure 1) and by cultivation practices like harvesting, after-growth for green manuring, mowing

and conversion of grassland to arable land and vice versa. A minimum Landsat TM image dataset

should include at least one image from spring (April, May) and one image from summer (end of

July, August). The optimal image dataset should include an additional image obtained between the

previous two periods (June or beginning of July).

[Insert figure 1 about here]

The classification of agricultural crops in the LGN4 crop map is based on a multi-temporal

approach. Optical satellite imagery obtained by Landsat TM and IRS-LISS3 has been used as well

as radar observations from the ERS2-SAR (table 1). In general, Landsat TM imagery is the

preferred type of imagery due to the low cost per unit area and the presence of bands in the middle-

infrared part of the electromagnetic spectrum.

[Insert table 1 about here]

Three classification zones can be distinguished over the Netherlands that were classified using

different combinations of imagery (figure 2). Zone 1 was classified using six Landsat TM images

from three different dates in 1999. All TM images in zone 1 were based on path 198. Zone 2 was

classified using six Landsat TM images from two different dates in 2000 and two IRS-LISS3

images of one date in 2000. All TM images in zone 2 were based on path 197. The IRS-LISS3

images were used to fill the temporal gap between the two Landsat TM image dates. Zone 3 was



classified using the same Landsat TM images that were used for zone 2. For this zone, three ERS2-

SAR radar images were used to fill the temporal gap between the two Landsat TM image dates

because no cloudfree IRS-LISS3 image was available for this area.

[Insert figure 2 about here]

2.2. The digital 1:10,000 topographic map of the Netherlands (TOP10-vector)

The Netherlands Topographic Service (TDN) produces the 1:10,000 digital topographic map of the

Netherlands (further to be mentioned 'TOP10-vector'). The nomenclature of the TOP10-vector

consists of a few hundred entities, which are related to polygon, line and point features. Since 1998,

the entire Netherlands is covered by around 1350 map sheets, which cover an area of 5 km by 6.25

km each. The 1:10,000 digital topographic map mainly contains information on land cover. The

functional use of many classes can only be determined by contextual information, e.g. grassland

and forest located in urban areas (parks or sport grounds).

2.3. Ancillary data

The PIPO system. LASER (Landelijke Service bij Regelingen) is an implementing body of the

Dutch Ministry of Agriculture, Nature Management and Fisheries which has the task of supervising

the allocation of agricultural subsidies in the framework of the Common Agricultural Policy (CAP)

of the European Union. An administrative system (PIPO) has been developed which uses GIS

technology to check all acreage-based applications for subsidies. In this system, all subsidised

crops, their acreage’s and the concerning farmers are linked with topographical parcels obtained

from TOP10-vector. One parcel from TOP10-vector can contain multiple crops and/or different

farmers. PIPO has been operational since 1997 and samples of the information stored in PIPO are

checked for fraud by farmers using remote sensing. Within the framework of the LGN4 crop map,



small samples from the PIPO database have been used to assess the accuracy of the LGN4 crop

map.

Agricultural Statistics. The General Census of Agriculture, organised by the Central Bureau for

Statistics (CBS), is carried out annually in May. Among other things, the General Census of

Agriculture provides information on the acreage of crops grown. The CBS Agricultural Statistics

contain cultivated areas of around 100 crop types, not including roads, ditches and hedges less than

4 m wide. The CBS Agricultural Statistics are published per municipality, per province and per

‘agricultural region’ (further to be mentioned ‘CBS regions’). An example of the crop statistics at

the level of the CBS regions for 1999/2000 is given in Table 2. The CBS regions are more or less

homogeneous areas as far as soil type and agricultural land use are concerned. The Netherlands is

subdivided into 66 CBS regions (figure 2).

[insert table 2 about here]

2.4. Pre-processing of satellite images

Channels 3,4,5 and the panchromatic channel were selected from the Landsat TM data because

these channels essentially capture the information content of Landsat TM data. Moreover, much

experience in crop classification was available for this band combination. The use of the IRS-

LISS3 satellite data was restricted to channels 1,2,3 because the 4th mid-infrared channel has a

lower spatial resolution. No radiometric or atmospheric corrections were applied to the imagery

because the basic requirement for classification is to separate one class from the others and the use

of calibrated image values does not significantly help in that respect.

All optical satellite images were geometrically corrected to the Dutch Reference System using

ground control points obtained from TOP10-vector. In general, a geometric accuracy of one pixel

was obtained. During the geometrical correction, the images were resampled to either 25 meter

resolution (TM multispectral, IRS-LISS3) or 12.5 meter resolution (TM panchromatic) using cubic



convolution resampling. The choice for this resolution was made because it allows the satellite

pixel grid to be aligned exactly with the LGN grid.  Moreover, choosing a grid size of 25 meter

simplifies aligning the grid origin during vector to raster operations because the pixel centres of the

target grid are always located at known values (xxxx12.5,  xxxx37.5, xxxx62.5, xxxx87.5) and the

rasterising window can thus be easily specified. This careful procedure for aligning the grids is

necessary to avoid shifting of the grid origin during further processing.

The choice for cubic convolution resampling was made because this resampling technique avoids

the disjointed appearance of nearest neighbour resampling and makes the satellite data easier to

interpret for the human eye (Lillesand and Kiefer 1994). The latter was an important aspect because

the discrimination of many non-agricultural LGN classes depends on visual interpretation. Other

authors (Fuller et al. 2002) have also documented the preference for cubic convolution resampling

over nearest neighbour resampling. Moreover, the discrimination of some crop types can be

improved using the appearance (texture) of the field. For example, flower bulb fields can often be

recognised by a striped pattern in the field which is caused by alternating patches of different

varieties of flower bulb species with slightly different spectral properties. It is often difficult to

recognise this striped pattern when the satellite data have been resampled using nearest neighbour

resampling. Although cubic convolution resampling changes the original pixel values, it affects the

per-pixel classification of the crop types only marginally and, according to the author's experience,

has no practical consequences for the crop classification.

For the Landsat 7 ETM images only, the panchromatic channel was merged with the multi-spectral

channels (3,4,5) using a Brovey transform, in order to obtain an image product that was optimal for

visual interpretation.

The radar images were geometrically corrected using ground control points from TOP10-vector and

resampled to 12.5-meter spatial resolution using nearest neighbour resampling. Nearest neighbour

resampling was chosen because it preserves the original pixel values so that a speckle filter could



be applied optionally. However, a speckle filter was not applied because it did not improve the

interpretation of the radar images in our case. Finally, the radar images were rescaled from 16-bit to

8-bit radiometric resolution in order to reduce the datasize and combined into a multi-date radar

composite.

2.5. Nomenclatures and classification scheme

The classification scheme of the LGN4 crop map distinguishes 6 different crops (grassland, maize,

potatoes, sugar beet, cereals and flower bulbs) and a category 'other crops'. In theory, the LGN

classification scheme could be extended to include some additional crop types that are now

classified as 'other crops'. In practice, many of these crops have a very small acreage that does not

justify extending the classification scheme or the timing of the satellite images that are needed to

discriminate these crops is too critical to rely on.

The use of many different sources of data in the classification methodology can easily lead to

problems with regard to the compatibility of the nomenclatures of the different data sources. It

often occurs that nomenclatures are incompatible when (geographic) databases are compared that

have differences in scale or that were created with a different purpose. With regard to the different

sources of crop data that were used for deriving the LGN4 classification methodology (CBS

statistics, TOP10-vector, PIPO database), it can be stated that the nomenclatures are compatible

with the classification scheme of the LGN4 crop map. This is mainly because all databases refer to

the same geographic entity, a cropped field, which is well-defined in terms of thematic class and

spatial delineation.



3. Classification methodology

3.1. Per-field classification for crop mapping

Research on crop classification in the past 20 years has demonstrated that the spectral and spatial

information delivered by high-resolution optical sensors like Landsat TM, SPOT-HRV and IRS-

LISS3 is generally sufficient to recognise different agricultural crops. Highly accurate crop

classifications can be obtained using data from these satellite sensors, particularly when the satellite

data are combined in a multi-temporal dataset with an appropriate timing of the satellite data

acquisitions over the growth cycle. Despite these good results, there are still two frequently

occurring classification problems that can strongly deteriorate the classification result of a per-pixel

crop classification (Smith and Fuller 2001).

The first effect is the spectral variability of the canopy reflectance within an agricultural field due

to, for example, variations in soil moisture conditions, nutrient limitations or pests and diseases.

This effect causes part of the cropped field to have different spectral properties compared with the

rest of the field. The classifier then may assign these pixels to another class depending on the actual

spectral variation and the spectral distance of the other classes. The second effect is the mixed-pixel

effect that occurs when a pixel is located at the boundary of two fields. In many cases the spectral

signature of the mixed-pixel will not resemble the spectral signature of one of the two crops of

which it consists, but it will resemble the spectral signature of another crop causing the classifier to

label these pixels erroneously.

The principle of per-field classification provides a simple and elegant solution for eliminating the

effect of the spectral variability within the field as well as the mixed pixel effect. The basic idea

behind per-field classification or, more generally, object-based classification, is that the satellite

image is divided into segments (objects) using knowledge of the 'real-world' objects on the earth's

surface (Kettig and Landgrebe 1976, Mason et al. 1988). With regard to crop classification this



means that the location and extent of each field is known. The final class of the entire object is then

assigned on the bases of one or more statistical properties of the collection of pixels that the object

consists of, instead of determining the class for each pixel separately.

From this point onward two object-based classification strategies emerge. One group of authors

determines the statistical properties of the object on the bases of the satellite spectral information

(Baker and Drummond 1984, Pedley and Curran 1991). Usually the average reflectance and

standard deviation per channel are calculated for each object, and are used as input for the

classifier. Another group of authors applies a per-pixel classification to the satellite images and

determines the statistical properties of the object on the bases of the thematic per-pixel

classification (Janssen et al. 1990, Mattikali 1995, Aplin et al. 1999). In this case the final class of

the object is usually assigned from the majority class of the pixels within the object. Hybrid

algorithms that use both approaches for classifying objects have also been developed (Cross et al.

1988, Smith and Fuller 2001).

During the development of object-based classification techniques it has been demonstrated that the

map accuracy obtained with object-based classification is usually superior to that of per-pixel

classification (Pedley and Curran 1991, Lobo et al. 1996, Shandley et al. 1996). However, only for

some time these techniques are being used in operational mapping projects (Fuller et al. 2002). The

main difficulty with applying object-based classification techniques is that the land surface objects

are often difficult to acquire (Smith and Fuller 2001). This major obstacle is gradually being

removed due to two developments. First, many countries now have a digital topographic vector

database available on scales 1:10,000 to 1:25,000 that can be used to delineate the land surface

objects. Secondly, operational software packages are becoming available that can apply a

segmentation algorithm to a satellite image in order to generate the land surface objects from the

satellite data itself. With regard to the LGN database it was the availability of the 1:10,000 digital



topographic map of the Netherlands that triggered the development and implementation of an

object-based (per-field) classification methodology.

3.2. Overview of the LGN4 per-field classification methodology

Three phases can be distinguished in the LGN4 classification methodology: object creation, object

classification and object post-processing (figure 3). The objective in the first phase is to obtain a

vector database containing all crop fields using TOP10-vector as a base map. In the second phase

the crop type is determined for each field (object) in a two-stage approach. First, the phenological

behaviour of each field is classified using multi-temporal NDVI images. Next, the images are

classified using a per-pixel maximum-likelihood classification. The final class for each field is

determined from the combination of the phenological class and the spectral class and stored as an

attribute in the crop field database. In the third phase post-processing is carried out on the crop field

database by correcting the label of small or elongated fields using criteria based on field size and

shape. A more elaborate description of the three phases will now be given.

[Insert figure 3 about here]

3.2.1. Phase 1: Creating the crop field database

We used TOP10-vector as a starting point for creating a crop field database covering the entire

Netherlands. The first step consisted of selecting all polygons from TOP10-vector that were

labelled ‘grassland’ or ‘arable land’. This selection yields all relevant parcels but also yields many

parcels that are not relevant for deriving the crop field database (urban parks, sports fields,

recreational areas, etc.). Therefore, we used the LGN3 database to reselect only those parcels that

were located in agricultural areas. The underlying assumption is that no land is converted from

other use into grassland or arable land.



The result of this process was a database containing all topographic agricultural parcels. The

boundaries of these parcels are defined by static topographic elements, which are not likely to

change from year to year. Examples of these types of elements are roads, hedges, ditches, streams

and fences. Within a topographic agricultural parcel various crops can be grown depending on the

particular cropping scheme of the farmer.

The second processing step consisted of adding crop boundaries to the topographic agricultural

parcels. The crop boundaries are dynamic because the location depends on how the farmer

subdivides his parcel into fields, which can differ from year to year. We decided that visual

interpretation was the most appropriate method to add the crop boundaries to the topographic

agricultural parcels. During this process the topographic agricultural parcels were displayed on a

computer screen with the 12.5-meter merged Landsat TM image on the background (figure 4a). An

operator added the crop boundaries manually (figure 4b). Note that ‘dangling arcs’ occur in figures

4a which correspond to topographic elements like hedges and ditches that do not span the entire

field. In some cases these dangling arcs have been extended (figure 4b) because they coincide with

crop boundaries and in other cases they are left untouched. Nevertheless, these dangling arcs do not

cause problems for feature extraction as long as the polygon topology is valid.

After digitising, the vector sheets were stored in a library structure that allowed easy handling of

large GIS datasets.

[Insert figure 4 about here]

3.2.2. Phase 2: crop field classification

The usual method for training a classifier to recognise different crops is by sampling fields in the

image whose crop type is known from reference data. In our case, reference data for training was

not available for the years 1999/2000. However, large reference datasets were available which were

gathered for the classification of previous LGN versions. Therefore the ‘new’ satellite images could



be interpreted using knowledge about crop temporal and spectral characteristics from the historic

reference data. Training samples were thus assigned on the bases of experience because the spectral

and temporal properties of crops do not change a lot over the years.

Gross classification errors were avoided by using statistics on crop acreage to ‘guide’ the crop

classification. On the basis of previous LGN classifications it was known that the CBS statistics

were quite a good indication of the true crop acreage, particularly if the acreage for a certain crop in

the area is large. Therefore, it was assumed that when the crop acreage in the classified image

deviated more then 15% from the acreage reported by the statistics, then the operator probably

assigned incorrect training samples. A prerequisite for this technique is that it is the area for which

the crop statistics were gathered is the same as the one being classified. This was accomplished by

clipping the crop field database with the boundaries of the CBS regions, thus treating each CBS

region as a separate classification unit.

We used the optical satellite data to create a multi-temporal set of NDVI images for each CBS

region. The field boundaries in the crop field database were used to calculate the average NDVI per

field so that the seasonal behaviour of the NDVI could be analysed for each field. For each image

date and CBS region, an operator determined a suitable NDVI threshold to separate bare soil from

vegetated fields. Adapting the NDVI threshold values for each image date and CBS region

effectively eliminates differences in NDVI between image dates due to spectral or radiometric

variations and also compensates phenological variations over the country.

A decision tree then clustered the fields into four phenological groups: ‘evergreen crops’ with high

NDVI all year (mainly grasslands), ‘early crops’ with high NDVI in spring (winter cereals and

spring flowerbulbs), ‘late crops’ with high NDVI in summer (maize, sugarbeet, consumption

potatoes, etc.) and a category ‘bare soil’ for fields that did not show a seasonal NDVI pattern. This

last group of fields mainly concerns crops with a short phenological cycle so that emergence and

harvesting were in between satellite overpasses (for example seed potatoes and many horticultural



crops). The acreage of the four phenological groups was compared with the crop statistics in order

to determine if the NDVI thresholds were set correctly.

The field boundaries in the crop field database could now be used to clip the satellite image that

was most suitable for classifying each phenological group. So, the boundaries of the fields that

were labelled as ‘early crops’ were used to clip the Landsat TM images of spring, while the

boundaries of the fields that were labelled as ‘late crops’ were used to clip the Landsat TM images

from summer. Fields with the phenological class ‘evergreen crops’ were best classified using a

Landsat TM image from summer because occasionally some fields with early crops like winter

cereals ended up in this phenological group. This confusion was present mainly in the phenological

classifications that were based on Landsat TM data from 1999 (zone 1) because the acquisition

dates of all Landsat TM images were within the phenological cycle of winter-wheat (figure 1).

The actual classification of the satellite images was carried out for each phenological group

separately using a combination of visual interpretation and maximum likelihood classification. The

phenological groups ‘evergreen crops’ and ‘early crops’ were generally so homogeneous in crop

type that only a few fields needed to be assigned to another class and this could be done more

efficiently using visual interpretation. The phenological group ‘late crops’ was generally classified

using a per-pixel maximum likelihood classification because this phenological group consists of a

large number of different crops with sufficiently distinct spectral signatures.

The phenological group ‘bare soil’ needed a special approach because this group consisted of fields

that did not show a seasonal NDVI pattern at all and thus no information on crop type could be

gathered from the satellite data. In zones 1 and 2 these fields were generally classified as ‘other

crops’ because knowledge of the crop calendar excludes all other classes in the LGN4

nomenclature. In zone 3, however, confusion was present between seed potatoes and spring cereals

because the phenological cycle of these crops (figure 1) is in between the Landsat TM overpasses.

We used the multi-date radar composite to separate these two crops. Due to the different canopy



structure, the two crop types show a large difference in radar backscatter and can be easily

discriminated by visual interpretation of the multi-date radar composite.

In the last classification stage, the four classification results corresponding to the four phenological

groups were combined into a single classified image. The class for each field in the crop field

database was determined by taking the majority class of all pixels within that field. Each field’s

class was stored as an attribute in the crop field database for further processing.

3.2.3. Phase 3: post-processing of the crop field database

The scale difference between the crop field database and the satellite data is one of the implications

of using a 1:10,000 base map as a starting point for the crop field database. As a result, the crop

field database contains a large number of very small or elongated polygon features (often smaller

then 0.5 ha) that consist of a few satellite pixels only. These polygon features cannot be properly

classified because the class that is assigned to these polygon features depends on the class of only

one or two pixels. Most of these small polygon features consist of grass-covered areas like

riverbanks, yards and borders. It was therefore decided to assign these features to the LGN class

‘grassland’ and select them using three selection criteria: shapefactor, TOP10-vector label and

polygon area. The shapefactor was calculated for all polygon features using:

perimeter
arearshapefacto ⋅⋅

=
π4

This equation will return a maximum value of ‘1’ for a perfect circle and values smaller than 1 for

polygons with other shapes. Narrow, elongated polygons in particular will obtain small values for

this shapefactor.

The following queries were carried out independently in order to select small and elongated

polygons that should be reclassified to the LGN class ‘grassland’:



1. (Shapefactor < Tshp) AND (Top10-vector label = ‘grassland’)

2. (Polygon-area < Tarea) AND (Top10-vector label = ‘grassland’)

Tshp and Tarea are visually defined thresholds for the shapefactor and polygon-area. These thresholds

were adjusted for each CBS region. Generally, values for Tshp were between 0.35 and 0.45

depending on the parcel shape and size in the particular CBS region. Furthermore, it was found that

0.5 hectare was a suitable threshold on polygon-area (Tarea).

3.3. Accuracy assessment

Accuracy assessment of the LGN4 crop map was carried out using validation data from the PIPO

database. The crop information in this database is gathered from the farmers themselves for the

allocation of agricultural subsidies. The PIPO database therefore cannot be regarded as 100%

correct because fraudulent practices can occur. However, the advantage of using the PIPO database

consists of the abundance of validation data which is expected to outweigh the disadvantage of

errors in the PIPO database due to fraudulent farmers.

The validation dataset included 53 validation sites across the Netherlands with a total of 15865

fields available for validation. The nomenclature of the PIPO database was aggregated and

converted to the LGN4 nomenclature. Both the validation dataset and the LGN4 crop map were

converted to raster format with a cell size of 25 meter. Error matrices were generated for each

validation site separately and aggregated to provincial and national level.

4. Results

4.1. Pixel-based validation

The error-matrix (table 3) demonstrates that at the national level the classification has an overall

accuracy of 90.4%. The classes ‘grassland’, ‘maize’, ‘sugar beet’ and ‘cereals’ were classified with



a user’s and producer’s accuracy of over 85%. The class ‘potatoes’ has been classified with high

user’s accuracy (85.9%) but somewhat lower producer’s accuracy (79.8%). Potatoes are mainly

confused with ‘other crops’ which can be explained by the deviating phenological behaviour of

seed potatoes.

The class ‘flower bulbs’ has been classified with moderate user’s accuracy (55.2%) and somewhat

better producer’s accuracy (69.9%). This accuracy assessment is based on few validation pixels

because flower bulb cultivation is concentrated in certain areas in the Netherlands (Table 2) and

these areas are not represented by the validation sites. Moreover, flower bulb cultivation is not a

subsidised crop and consequently there is little information about flower bulb fields in the PIPO

database anyway. Our current validation sample for ‘flower bulbs’ thus consists of isolated fields in

areas where flower bulbs are scarcely cultivated and thus easily overlooked. On the basis of

experience it is known that flower bulb fields can be classified relatively easily from satellite data

in areas where flower bulb fields are abundant. Therefore, it is expected that the user’s and

producer’s accuracy for flower bulbs is in the order of 85% in areas where flower bulb cultivation

is abundant.

Classification results are relatively poor for the class ‘other crops’ with 49.9% user’s accuracy and

52.6% producer’s accuracy. Similar classification results for the class ‘other crops’ were obtained

with the LGN2 and LGN3 databases. There are several reasons for this poor classification result.

Firstly, the class consists of a large number of crops with different spectral and phenological

properties, which makes them difficult to recognise. Secondly, many of the crops in this group are

horticultural crops that are often grown in fields that are small compared to the pixel size of

Landsat TM. Thirdly, the assignment of a field to the class ‘other crops’ is in many cases not based

on a positive recognition of the crop but merely based on the fact that all other crop types are ruled

out. This causes classification errors in one of the other classes to accumulate in the class ‘other



crops’, while classification errors in the class ‘other crops’ are distributed over the 6 other crop

types.

[Insert table 3 about here]

The overall classification accuracy at the provincial level (figure 5) demonstrates that the

classification accuracy is homogeneous over the entire country and for most provinces between

80% and 95%. The classification accuracy is relatively low in the province of Flevoland (71.1%).

This low accuracy is in contrast to what we expected because Flevoland is characterised by large-

scale agriculture with large, rectangular fields and a homogeneous soil type. Therefore, we suspect

that the poor classification accuracy is caused by non-representative sampling. This hypothesis is

supported by the small number of reference pixels in this province compared to most of the other

provinces.

[Insert figure 5 about here]

4.2. Comparison of LGN4 statistics to the CBS agricultural statistics

We compared the crop acreage derived from the LGN4 crop map with the acreage reported by the

CBS agricultural statistics. This must be regarded as a qualitative validation because the two data

sources are not strictly independent. Nevertheless, it gives insight in how well crop statistics can be

predicted from the LGN4 crop map.

We selected two scatterplots that demonstrate the relationship between the LGN4 and CBS

statistics for grassland (figure 6) and cereals (figure 7). For the class grassland there is a very good

relationship, but the LGN4 crop map systematically overestimates the acreage of grassland. The

overestimation is due to a difference in measurement between the statistics and the LGN4 crop

map. In the CBS statistics only grassland is counted that is in use for agricultural production, while

the LGN4 crop map also includes yards, banks and borders that are not counted in the CBS



statistics. Furthermore, the census that the CBS carries out only counts farms larger than a certain

threshold. The majority of the small farms excluded are dairy farms and this will cause an

underestimation of the true area of grassland.

The difference in measurement and class definition does not play a role for the class cereals. In this

case the relationship between the LGN4 statistics and the CBS statistics is almost perfect and

without a bias towards overestimation. The scatterplots for most other crops are similar to the

scatterplot for cereals.

[Insert figure 6 and figure 7 about here]

4.3. Efficiency of per-field classification

The crop classifications in the LGN3 and LGN4 databases have been obtained using different

classification techniques. For LGN3 semi-automated per-pixel classification was applied which

relied heavily on visual interpretation, while LGN4 was classified using a per-field classification

approach. Both LGN versions have a similar accuracy and we can therefore compare the effort that

was spent in order to evaluate if a per-field classification approach really is more efficient.

We made an estimate of the total man-hours that was spent for both LGN versions, in order to

derive a crop map from the satellite imagery. In the case of the LGN3 database, the man hours

consisted only of hours for classification, while for the LGN4 database the total man-hours were

divided into hours for digitising and hours for classification (table 4).

The results demonstrate that with regard to classification, the total man-hours could be reduced

from about 1500 to 500 hours. These results confirm that per-field classification is more efficient

and speeds up the classification process with a factor three. However, the total man-hours that was

spent in deriving the crop field database (digitising) is in the order of 2300 hours, which almost



doubles the total man-hours spent for mapping the crops in the LGN4 database compared to the

LGN3 database.

The total cost of mapping the crops in the LGN4 database (table 4) was less than the cost of

mapping in the LGN3 database, despite the large effort spent on digitising field boundaries. The

explanation is that digitising field boundaries is a relatively simple job and doesn’t need to be

carried out by a skilled remote sensing operator. Digitising can thus easily be contracted out,

thereby reducing cost.

[insert table 4 about here]

5. Conclusions and discussion

We have implemented a methodology for the per-field mapping of crops in the Netherlands. The

methodology integrates multi-temporal and multi-sensor satellite imagery, statistical data on crop

acreage and parcel boundaries from the 1:10,000 digital topographic vector database. In the first

stage of the methodology we created a crop field database covering the entire Netherlands by

selecting the static boundaries of agricultural parcels from the 1:10,000 digital vector database and

by adding the dynamic crop boundaries from satellite images using on-screen digitising. In the next

stage, the crop discrimination procedure made use of the phenological and spectral properties of

each field in order to determine the crop type. The use of the crop field boundaries effectively

eliminated the classification errors due to the within-field spectral variability and mixed-pixels

along the boundaries of fields.

Field information on crop type is needed for obtaining a thorough knowledge of the spectral and

temporal properties of different crops. This methodology demonstrates that, once this knowledge

has been collected, it can be transferred to new satellite datasets. Crop classifications were carried

out using ‘interpreted’ training samples and statistical data on crop acreage were used to guide the



classification process. The accuracy assessment of the LGN4 crop map demonstrates that this

approach leads to a highly accurate crop map.

The error matrix at the national level demonstrates that we achieved the aim of 85% overall

accuracy and 75% accuracy at class level for most crops. A logical explanation of the relatively

poor classification results for those crops that did not meet the objective could be given (‘flower

bulbs’ and ‘other crops’). At the provincial level, the validation results illustrate that the use of

different combinations of satellite imagery for different parts of the country has not lead to large

spatial variation of the overall map accuracy.

There is a good relationship between the crop acreage derived from the LGN4 crop map and the

acreage reported by the CBS statistics for all classes. These results indicate that the LGN4 crop

map can predict crop statistics well. The LGN4 crop map is depicting the individual fields which is

a distinct advantage over the CBS agricultural statistics because the CBS statistics are only

available for administrative units.

The evaluation of the efficiency of the per-field classification versus a per-pixel classification

showed that the use of field boundaries decreased the effort for classification from 1500 to 500

man-hours. However, the effort spent on digitising was estimated at 2300 man-hours, which almost

doubled the total time effort for the LGN4 crop classification compared to the LGN3 crop

classification. Given the large effort that had to be spent on digitising the crop field boundaries, the

question can be raised whether image segmentation techniques are a more efficient alternative for

deriving field segments.

From a practical point of view, image segmentation was of no use for the LGN4 crop map because,

at the start of the project, segmentation algorithms were not implemented in operational software

packages and were difficult to implement in a map production environment. However, from a

methodological point of view there are several disadvantages to the use of segmentation techniques.



First of all, the results of segmentation algorithms are often unpredictable and in many cases they

fail to collect all boundaries that can be discriminated by the human eye. Also, the regions that a

segmentation algorithm creates do not necessarily relate to meaningful entities (Hill 1999) because

the algorithm cannot take contextual information (parcel shape and occupation pattern) into

account. In cases where segmentation was successfully applied for obtaining crop fields (Janssen

and Molenaar 1995) segmentation was only proven to work for areas with simple field geometry

(large rectangular fields).

A further disadvantage of applying image segmentation to Landsat TM images without using a

large-scale topographic map, is that sub-pixel elements like small roads, ditches, hedges and

streams will be included in the field segments. This causes an overestimation of the true cropped

area. Particularly if crop fields are small, like in many areas in Europe, the crop area overestimation

can be significant. Estimation of this effect using the LGN4 crop map demonstrates that the

overestimation varies between 3% to 9% of the total crop area. A crop field database derived from

a large-scale topographic map does not have this effect because the static parcel boundaries have

been derived from aerial photography and have a much higher spatial accuracy.

The most promising way to apply segmentation techniques for crop mapping is by combining

image segmentation techniques with a large-scale topographic map. In such a methodology the

segmentation is carried out within the parcel boundaries that are defined by the large-scale

topographic map. An additional problem that needs to be solved in such a methodology is that

image segmentation provides raster segments. Combining vector boundaries obtained from a large-

scale topographic map with blocky vector boundaries obtained from vectorising the raster segments

is not a trivial task, and can easily lead to under- and overshoots and polygon errors.

Still, even if this methodology proves to be successful, it has to be tested whether it is more cost-

efficient than on-screen digitising. Preliminary analyses of the current crop field database with

older satellite imagery indicate that the ‘dynamic’ crop boundaries are less dynamic than thought,



and many boundaries can be re-used. We therefore expect that updating the crop field database for

classifying a new series of satellite images involves considerably less effort compared to creating

the initial crop field database. In such a scenario, the use of image segmentation techniques really

needs to be highly cost-efficient compared to on-screen digitising before it can be successfully

implemented.
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Table 1. Overview of the satellite images used to produce the LGN4 crop map.

Sensor Date Path Row Classification Zone

Landsat TM5 01-04-1999 198 23 1
Landsat TM5 01-04-1999 198 24 1
Landsat TM5 03-05-1999 198 23 1
Landsat TM5 03-05-1999 198 24 1
Landsat TM5 29-07-1999 199 24 1
Landsat TM7 30-07-1999 198 23 1
Landsat TM7 30-07-1999 199 24 1
Landsat TM7 06-05-2000 197 23 2/3
Landsat TM7 06-05-2000 197 24 2/3
Landsat TM7 06-05-2000 197 25 2/3
IRS-LISS3 09-06-2000 18 31 2
IRS-LISS3 09-06-2000 18 32 2
ERS2-SAR 04-06-2000 26787 2533 3
ERS2-SAR 09-07-2000 27288 2533 3
ERS2-SAR 13-08-2000 27789 2533 3
Landsat TM7 26-08-2000 197 23 2/3
Landsat TM7 26-08-2000 197 24 2/3
Landsat TM7 26-08-2000 197 25 2/3



Table 2. Area of the main agricultural crops in the Netherlands for the 66 CBS regions (hectares).
CBS
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number

CBS Region name
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2001 De Marne 2078 213 2487 214 1359 2866 729 801 50 0 0
2002 Centraal weidegebied in Groningen 22487 970 932 432 860 2792 680 584 6 0 0
2003 Oostelijke bouwstreek in Groningen 12817 1933 1254 6125 4557 17178 3365 3539 31 0 2
2004 Westerwolde en Groninger Veenkol. 4464 1574 185 11104 5033 2241 5623 1309 0 31 2
2005 Groninger zuidelijk Westerkwartier 14034 1151 17 92 8 54 67 16 0 6 0
2006 Oostelijk Hogeland 5969 418 3667 694 2522 5724 1005 1612 29 0 1

2101 Noordelijk Friesland 32884 1842 6065 739 4084 1163 3617 2872 141 38 0
2102 Weidestreek in Friesland 82010 3382 465 182 318 106 365 236 71 60 0
2103 De Wouden 75708 7095 565 694 212 47 326 264 0 294 0
2104 Eilanden 3573 25 0 1 0 0 0 1 0 0 0

2201 Weidegebied van het Noorderveld 6488 1184 117 1062 209 209 436 42 0 45 0
2202 Smilde & Centraal zandgeb. Drenthe 15756 3921 704 6236 2777 1270 4011 809 6 255 0
2203 Zuidwestelijk weidegeb. Drenthe 22409 4040 219 972 237 388 731 159 15 101 4
2204 Zuidelijk zandgebied in Drenthe 12328 3661 276 4201 2049 797 2213 1047 0 11 2
2205 Drentse Veenkoloniën en Hondsrug 10045 2811 863 16463 9240 3019 8282 1486 0 54 0

2301 Weidegebied in Overijssel 54629 6967 88 1122 215 488 490 242 20 191 0
2302 Noordoost Overijssel 17841 6857 280 4515 1459 671 1957 778 22 210 5
2303 Twente 54754 21585 208 1119 345 1538 1187 670 5 45 0
2304 Salland 22505 6247 69 1074 668 733 720 234 4 47 0

2401 Noordoostelijke Polder 3793 795 6597 4165 6286 1672 2588 8457 2029 371 84
2402 Zuidelijke IJsselmeerpolders 8703 3089 1801 10365 9003 5989 2699 10808 174 0 0

2501 Oostelijke Veluwe 17511 2942 6 349 141 288 257 108 2 6 0
2502 IJsselstreek 17554 4398 72 587 545 808 329 124 6 0 0
2503 Zuidelijk Gelderland 14649 4099 138 398 937 1824 234 612 0 0 0
2504 Oostelijke Betuwe en Nijmegen 3354 558 35 206 375 978 239 102 0 0 0
2505 Veluwezoom en Betuwe 25997 3728 24 751 992 2058 675 674 1 0 0
2506 Bommelerwaard 6244 1051 3 127 64 188 68 204 0 0 0
2507 Westelijke Veluwe 22174 6221 4 271 211 496 391 214 14 23 19
2508 Achterhoek 57194 22110 1152 2747 1453 2995 2671 667 217 71 0

2601 Kromme Rijn-streek en Heuvelrug 9599 1439 0 47 79 120 66 100 0 0 1
2602 Westelijk weidegebied in Utrecht 31718 1608 0 19 39 37 43 47 0 0 0
2603 Centraal tuinbouwgebied in Utrecht 4402 255 15 34 108 0 21 80 8 0 1
2604 Eemland 6800 552 0 26 28 18 34 45 0 0 0
2605 Zandgebied in Utrecht 7966 1861 1 35 30 54 79 26 2 0 2

2701 Wieringen en Wieringermeer 1996 497 3136 1314 3011 1599 1085 3105 446 166 22
2702 Haarlemmermeer 977 177 98 1804 1910 1980 922 1020 141 6 82
2703 Amstelland en Aalsmeer (- A'dam) 1515 93 29 223 216 208 47 39 2 0 6
2704 Texel en Land van Zijpe 9587 691 1838 267 1295 458 1245 1488 3932 1515 617
2705 West-Friesland en omgeving 22750 1054 1759 570 344 362 546 5478 3725 865 168
2706 Waterland + NH Droogmak. (+ A'dam) 27934 992 244 748 787 477 615 699 272 2 45
2707 t Gein en Gooiland (excl. A'dam) 5675 155 0 1 26 71 36 59 0 0 0
2708 Kennemerland 4062 185 10 20 69 43 11 178 616 143 183

2801 Voorne-Putten en Hoeksche Waard 6317 678 146 5835 4150 3953 4140 5308 4 0 1
2802 Rotterdam en omgeving 1896 59 0 425 238 123 721 1111 0 0 1
2803 Goeree-Overflakkee 1922 561 303 3390 2425 901 2136 3380 380 2 1
2804 Westelijk Rijnland 10415 745 251 446 433 216 367 581 32 57 10
2805 Boskoop en Rijneveld 2522 152 128 246 175 179 204 394 0 0 0
2806 Krimpenerwaard en Oostel. Rijnland 22433 566 18 112 67 25 27 140 0 2 0
2807 Alblasserwaard en Vijfherenlanden 25295 758 0 67 53 36 47 42 0 0 0
2808 Bollenstreek 2300 28 2 11 9 19 9 197 2048 52 285
2809 Westland en ZH Droogmak. (- R'dam) 7445 445 365 929 799 665 794 1289 0 21 5

2901 Noordelijk Zeeland 3889 1038 270 5950 4320 2239 4622 7798 56 5 50
2902 Walcheren en Zuid-Beveland 6045 1649 244 5095 5105 4454 5301 6861 126 0 1
2903 Zeeuwsch-Vlaanderen 5072 2057 1930 6798 7792 6358 6934 14262 116 7 2

3001 Noordwesthoek 2246 1003 1139 3439 2859 2902 1848 5515 50 23 0
3002 Westelijke Langstraat 6222 2930 39 870 793 416 505 1477 0 0 0
3003 Biesbosch 1377 341 7 1109 886 952 452 1867 1 0 0
3004 Oostelijke Langstraat 8234 3528 19 1098 762 530 494 1356 0 0 0
3005 Westelijke Zandgronden 8189 4128 407 1862 1522 539 885 4835 52 105 2
3006 Land van Breda 13011 3049 0 133 119 38 148 1124 0 3 0
3007 De Kempen 14752 13467 73 3785 2581 235 373 3680 18 8 7
3008 Midden Noord-Brabant 18253 12601 87 1410 1077 243 686 1799 6 8 4
3009 Maaskant en Land van Cuijk 13908 11956 81 2104 2264 487 965 1791 106 80 6
3010 Westelijk Peelgebied 25104 23571 90 2187 2099 568 874 3371 68 20 23

3101 Noord-Limburg 23369 16224 159 6446 7657 3548 2779 9975 381 565 152
3102 Zuid-Limburg 11667 4794 41 1951 4218 5815 866 878 0 0 0

Total 1013803 240753 41223 137811 116505 99449 86877 130064 15430 5515 179



Table 3. Error matrix for the LGN4 crop map at the national level.

Reference data

LGN4 grassland maize potatoes sugar beet cereals other

crops

flower

bulbs

user's

accuracy

grassland 462520 10216 1562 635 5107 9498 196 94.4%

maize 2884 135913 4478 2046 476 944 141 92.5%

potatoes 5183 2084 80866 598 1467 3853 89 85.9%

sugar beet 227 1387 1117 48124 80 950 0 92.8%

cereals 2064 249 1368 249 111202 6199 124 91.6%

other crops 3920 1826 11796 676 5612 24234 474 49.9%

flower bulbs 1080 330 103 69 0 355 2382 55.2%

producer's

accuracy

96.8% 89.4% 79.8% 91.8% 89.7% 52.6% 69.9% 90.4%



Table 4. Comparison of man-hours and cost involved in creating the LGN3 and LGN4 crop maps.

LGN3 LGN4

Man-hours

Classification 1500 520

Digitising - 2230

Cost (€)

Classification 144000 50000

Digitising 40000
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Figure 1. Crop calendar for satellite mapping of the most important crops in the Netherlands
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Figure 2. Boundaries of the 66 CBS regions in the Netherlands and the division in classification zones.
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Figure 3. Schematic overview of the processing steps that were carried out to derive the LGN4 crop map.
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Figure 4. Landsat 7 ETM images overlayed with the topographic agricultural parcels (A) and the crop field database (B).
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Figure 5. Overall accuracy of the LGN4 crop map per Dutch province. Bars indicate the overall accuracy on the primary y-axis, black squares
indicate the number of reference pixels on the secondary y-axis.
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Figure 6. Comparison of area statistics obtained from the LGN4 crop map and area statistics reported by the CBS for grasslands in 66 CBS regions.
The dotted lines are the lines of 15% deviation.
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Figure 7. Comparison of area statistics obtained from the LGN4 crop map and area statistics reported by the CBS for cereals in 66 CBS regions. The



dotted lines are the lines of 15% deviation.


